skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: INTEGRAL FIELD SPECTROSCOPY AND MULTI-WAVELENGTH IMAGING OF THE NEARBY SPIRAL GALAXY NGC 5668 : AN UNUSUAL FLATTENING IN METALLICITY GRADIENT

Abstract

We present an analysis of the full bidimensional optical spectral cube of the nearby spiral galaxy NGC 5668, observed with the Pmas fiber PAcK Integral Field Unit (IFU) at the Calar Alto observatory 3.5 m telescope. We make use of broadband imaging to provide further constraints on the evolutionary history of the galaxy. This data set will allow us to improve our understanding of the mechanisms that drive the evolution of disks. We investigated the properties of 62 H II regions and concentric rings in NGC 5668 and derived maps in ionized-gas attenuation and chemical (oxygen) abundances. We find that while inward of r {approx}36'' {approx} 4.4 kpc {approx} 0.36 (D{sub 25}/2) the derived O/H ratio follows the radial gradient typical of spiral galaxies, the abundance gradient beyond r {approx} 36'' flattens out. The analysis of the multi-wavelength surface brightness profiles of NGC 5668 is performed by fitting these profiles with those predicted by chemo-spectrophotometric evolutionary models of galaxy disks. From this, we infer a spin and circular velocity of {lambda} = 0.053 and v{sub c} = 167 km s{sup -1}, respectively. The metallicity gradient and rotation curve predicted by this best-fitting galaxy model nicely match the values derived frommore » the IFU observations, especially within r {approx}36''. The same is true for the colors despite some small offsets and a reddening in the bluest colors beyond that radius. On the other hand, deviations of some of these properties in the outer disk indicate that a secondary mechanism, possibly gas transfer induced by the presence of a young bar, must have played a role in shaping the recent chemical and star formation histories of NGC 5668.« less

Authors:
; ; ; ; ;  [1];  [2];  [3];  [4];  [5]
  1. CEI Campus Moncloa, UCM-UPM, Departamento de Astrofisica y CC. de la Atmosfera, Facultad de CC. Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain)
  2. National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States)
  3. Centro Astronomico Hispano Aleman, Calar Alto (CSIC-MPG), C/Jesus Durban Remon 2-2, E-04004 Almeria (Spain)
  4. Instituto de Fisica de Cantabria, CSIC-UC, Avenida de los Castros s/n, 39005 Santander (Spain)
  5. Laboratoire dAstrophysique de Marseille, OAMP, Universite Aix-Marseille and CNRS UMR 6110, 38 rue Frederic Joliot-Curie, 13388 Marseille cedex 13 (France)
Publication Date:
OSTI Identifier:
22039274
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 754; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ASTRONOMY; ASTROPHYSICS; ATTENUATION; BRIGHTNESS; DIAGRAMS; EMISSION SPECTROSCOPY; GALACTIC EVOLUTION; GALAXIES; OXYGEN; ROTATION; SPECTROPHOTOMETRY; SPIN; STARS; TELESCOPES; VELOCITY; WAVELENGTHS

Citation Formats

Marino, R. A., Gil de Paz, A., Castillo-Morales, A., Perez-Gonzalez, P. G., Gallego, J., Zamorano, J., Munoz-Mateos, J. C., Sanchez, S. F., Alonso-Herrero, A., and Boissier, S., E-mail: ramarino@fis.ucm.es. INTEGRAL FIELD SPECTROSCOPY AND MULTI-WAVELENGTH IMAGING OF THE NEARBY SPIRAL GALAXY NGC 5668 : AN UNUSUAL FLATTENING IN METALLICITY GRADIENT. United States: N. p., 2012. Web. doi:10.1088/0004-637X/754/1/61.
Marino, R. A., Gil de Paz, A., Castillo-Morales, A., Perez-Gonzalez, P. G., Gallego, J., Zamorano, J., Munoz-Mateos, J. C., Sanchez, S. F., Alonso-Herrero, A., & Boissier, S., E-mail: ramarino@fis.ucm.es. INTEGRAL FIELD SPECTROSCOPY AND MULTI-WAVELENGTH IMAGING OF THE NEARBY SPIRAL GALAXY NGC 5668 : AN UNUSUAL FLATTENING IN METALLICITY GRADIENT. United States. doi:10.1088/0004-637X/754/1/61.
Marino, R. A., Gil de Paz, A., Castillo-Morales, A., Perez-Gonzalez, P. G., Gallego, J., Zamorano, J., Munoz-Mateos, J. C., Sanchez, S. F., Alonso-Herrero, A., and Boissier, S., E-mail: ramarino@fis.ucm.es. 2012. "INTEGRAL FIELD SPECTROSCOPY AND MULTI-WAVELENGTH IMAGING OF THE NEARBY SPIRAL GALAXY NGC 5668 : AN UNUSUAL FLATTENING IN METALLICITY GRADIENT". United States. doi:10.1088/0004-637X/754/1/61.
@article{osti_22039274,
title = {INTEGRAL FIELD SPECTROSCOPY AND MULTI-WAVELENGTH IMAGING OF THE NEARBY SPIRAL GALAXY NGC 5668 : AN UNUSUAL FLATTENING IN METALLICITY GRADIENT},
author = {Marino, R. A. and Gil de Paz, A. and Castillo-Morales, A. and Perez-Gonzalez, P. G. and Gallego, J. and Zamorano, J. and Munoz-Mateos, J. C. and Sanchez, S. F. and Alonso-Herrero, A. and Boissier, S., E-mail: ramarino@fis.ucm.es},
abstractNote = {We present an analysis of the full bidimensional optical spectral cube of the nearby spiral galaxy NGC 5668, observed with the Pmas fiber PAcK Integral Field Unit (IFU) at the Calar Alto observatory 3.5 m telescope. We make use of broadband imaging to provide further constraints on the evolutionary history of the galaxy. This data set will allow us to improve our understanding of the mechanisms that drive the evolution of disks. We investigated the properties of 62 H II regions and concentric rings in NGC 5668 and derived maps in ionized-gas attenuation and chemical (oxygen) abundances. We find that while inward of r {approx}36'' {approx} 4.4 kpc {approx} 0.36 (D{sub 25}/2) the derived O/H ratio follows the radial gradient typical of spiral galaxies, the abundance gradient beyond r {approx} 36'' flattens out. The analysis of the multi-wavelength surface brightness profiles of NGC 5668 is performed by fitting these profiles with those predicted by chemo-spectrophotometric evolutionary models of galaxy disks. From this, we infer a spin and circular velocity of {lambda} = 0.053 and v{sub c} = 167 km s{sup -1}, respectively. The metallicity gradient and rotation curve predicted by this best-fitting galaxy model nicely match the values derived from the IFU observations, especially within r {approx}36''. The same is true for the colors despite some small offsets and a reddening in the bluest colors beyond that radius. On the other hand, deviations of some of these properties in the outer disk indicate that a secondary mechanism, possibly gas transfer induced by the presence of a young bar, must have played a role in shaping the recent chemical and star formation histories of NGC 5668.},
doi = {10.1088/0004-637X/754/1/61},
journal = {Astrophysical Journal},
number = 1,
volume = 754,
place = {United States},
year = 2012,
month = 7
}
  • We present the first metallicity gradient measurement for a grand-design face-on spiral galaxy at z {approx} 1.5. This galaxy has been magnified by a factor of 22x by a massive, X-ray luminous galaxy cluster MACS J1149.5+2223 at z = 0.544. Using the Laser Guide Star Adaptive Optics aided integral field spectrograph OSIRIS on KECK II, we target the H{alpha} emission and achieve a spatial resolution of 0.''1, corresponding to a source-plane resolution of 170 pc. The galaxy has well-developed spiral arms and the nebular emission line dynamics clearly indicate a rotationally supported disk with V{sub rot}/{sigma} {approx} 4. The best-fitmore » disk velocity field model yields a maximum rotation of V{sub rot}sin i = 150 {+-} 15 km s{sup -1}, and a dynamical mass of M{sub dyn} = (1.3 {+-} 0.2) x 10{sup 10} cosec{sup 2}(i) M{sub sun} (within 2.5 kpc), where the inclination angle i = 45{sup 0} {+-} 10{sup 0}. Based on the [N II] and H{alpha} ratios, we measured the radial chemical abundance gradient from the inner hundreds of parsecs out to {approx}5 kpc. The slope of the gradient is -0.16 {+-} 0.02 dex kpc{sup -1}, significantly steeper than the gradient of late-type or early-type galaxies in the local universe. If representative of disk galaxies at z {approx} 1.5, our results support an 'inside-out' disk formation scenario in which early infall/collapse in the galaxy center builds a chemically enriched nucleus, followed by slow enrichment of the disk over the next 9 Gyr.« less
  • Dwarf satellite galaxies are a key probe of dark matter and of galaxy formation on small scales and of the dark matter halo masses of their central galaxies. They have very low surface brightness, which makes it difficult to identify and study them outside of the Local Group. We used a low surface brightness-optimized telescope, the Dragonfly Telephoto Array, to search for dwarf galaxies in the field of the massive spiral galaxy M101. We identify seven large, low surface brightness objects in this field, with effective radii of 10-30 arcseconds and central surface brightnesses of μ {sub g} ∼ 25.5-27.5 magmore » arcsec{sup –2}. Given their large apparent sizes and low surface brightnesses, these objects would likely be missed by standard galaxy searches in deep fields. Assuming the galaxies are dwarf satellites of M101, their absolute magnitudes are in the range –11.6 ≲ M{sub V} ≲ –9.3 and their effective radii are 350 pc-1.3 kpc. Their radial surface brightness profiles are well fit by Sersic profiles with a very low Sersic index (n ∼ 0.3-0.7). The properties of the sample are similar to those of well-studied dwarf galaxies in the Local Group, such as Sextans I and Phoenix. Distance measurements are required to determine whether these galaxies are in fact associated with M101 or are in its foreground or background.« less
  • The Plateau de Bure Interferometer Arcsecond Whirlpool Survey has mapped the molecular gas in the central ∼9 kpc of M51 in its {sup 12}CO(1-0) line emission at a cloud-scale resolution of ∼40 pc using both IRAM telescopes. We utilize this data set to quantitatively characterize the relation of molecular gas (or CO emission) to other tracers of the interstellar medium, star formation, and stellar populations of varying ages. Using two-dimensional maps, a polar cross-correlation technique and pixel-by-pixel diagrams, we find: (1) that (as expected) the distribution of the molecular gas can be linked to different components of the gravitational potential;more » (2) evidence for a physical link between CO line emission and radio continuum that seems not to be caused by massive stars, but rather depends on the gas density; (3) a close spatial relation between polycyclic aromatic hydrocarbon (PAH) and molecular gas emission, but no predictive power of PAH emission for the molecular gas mass; (4) that the I – H color map is an excellent predictor of the distribution (and to a lesser degree, the brightness) of CO emission; and (5) that the impact of massive (UV-intense) young star-forming regions on the bulk of the molecular gas in central ∼9 kpc cannot be significant due to a complex spatial relation between molecular gas and star-forming regions that ranges from cospatial to spatially offset to absent. The last point, in particular, highlights the importance of galactic environment—and thus the underlying gravitational potential—for the distribution of molecular gas and star formation.« less
  • We obtained Hubble Space Telescope/Wide Field Camera 3 imaging of a sample of ten of the nearest and brightest nuclear clusters (NCs) residing in late-type spiral galaxies, in seven bands that span the near-UV to the near-IR. Structural properties of the clusters were measured by fitting two-dimensional surface brightness profiles to the images using GALFIT. The clusters exhibit a wide range of structural properties, with F814W absolute magnitudes that range from −11.2 to −15.1 mag and F814W effective radii that range from 1.4 to 8.3 pc. For 6 of the 10 clusters in our sample, we find changes in themore » effective radius with wavelength, suggesting radially varying stellar populations. In four of the objects, the effective radius increases with wavelength, indicating the presence of a younger population that is more concentrated than the bulk of the stars in the cluster. However, we find a general decrease in effective radius with wavelength in two of the objects in our sample, which may indicate extended, circumnuclear star formation. We also find a general trend of increasing roundness of the clusters at longer wavelengths, as well as a correlation between the axis ratios of the NCs and their host galaxies. These observations indicate that blue disks aligned with the host galaxy plane are a common feature of NCs in late-type galaxies, but are difficult to detect in galaxies that are close to face-on. In color–color diagrams spanning the near-UV through the near-IR, most of the clusters lie far from single-burst evolutionary tracks, showing evidence for multi-age populations. Most of the clusters have integrated colors consistent with a mix of an old population (>1 Gyr) and a young population (∼100–300 Myr). The wide wavelength coverage of our data provides a sensitivity to populations with a mix of ages that would not be possible to achieve with imaging in optical bands only. The surface brightness profiles presented in this work will be used for future stellar population modeling and dynamical studies of the clusters.« less
  • Integral field spectroscopy of 11 Type Ib/Ic supernova (SN Ib/Ic) explosion sites in nearby galaxies has been obtained using UH88/SNIFS and Gemini-N/GMOS. The use of integral field spectroscopy enables us to obtain both spatial and spectral information about the explosion site, enabling the identification of the parent stellar population of the SN progenitor star. The spectrum of the parent population provides metallicity determination via strong-line method and age estimation obtained via comparison with simple stellar population models. We adopt this information as the metallicity and age of the SN progenitor, under the assumption that it was coeval with the parentmore » stellar population. The age of the star corresponds to its lifetime, which in turn gives the estimate of its initial mass. With this method we were able to determine both the metallicity and initial (zero-age main sequence) mass of the progenitor stars of SNe Ib and Ic. We found that on average SN Ic explosion sites are more metal-rich and younger than SN Ib sites. The initial mass of the progenitors derived from parent stellar population age suggests that SN Ic has more massive progenitors than SN Ib. In addition, we also found indication that some of our SN progenitors are less massive than {approx}25 M{sub Sun }, indicating that they may have been stars in a close binary system that have lost their outer envelope via binary interactions to produce SNe Ib/Ic, instead of single Wolf-Rayet stars. These findings support the current suggestions that both binary and single progenitor channels are in effect in producing SNe Ib/Ic. This work also demonstrates the power of integral field spectroscopy in investigating SN environments and active star-forming regions.« less