skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SIMULATIONS OF ACCRETION POWERED SUPERNOVAE IN THE PROGENITORS OF GAMMA-RAY BURSTS

Journal Article · · Astrophysical Journal
; ;  [1];  [2]
  1. Department of Astronomy, University of Texas, 1 University Station C1400, Austin, TX 78712 (United States)
  2. Department of Astronomy, and Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario M5S 3H4 (Canada)

Observational evidence suggests a link between long-duration gamma-ray bursts (LGRBs) and Type Ic supernovae. Here, we propose a potential mechanism for Type Ic supernovae in LGRB progenitors powered solely by accretion energy. We present spherically symmetric hydrodynamic simulations of the long-term accretion of a rotating gamma-ray burst progenitor star, a 'collapsar', onto the central compact object, which we take to be a black hole. The simulations were carried out with the adaptive mesh refinement code FLASH in one spatial dimension and with rotation, an explicit shear viscosity, and convection in the mixing length theory approximation. Once the accretion flow becomes rotationally supported outside of the black hole, an accretion shock forms and traverses the stellar envelope. Energy is carried from the central geometrically thick accretion disk to the stellar envelope by convection. Energy losses through neutrino emission and nuclear photodisintegration are calculated but do not seem important following the rapid early drop of the accretion rate following circularization. We find that the shock velocity, energy, and unbound mass are sensitive to convective efficiency, effective viscosity, and initial stellar angular momentum. Our simulations show that given the appropriate combinations of stellar and physical parameters, explosions with energies {approx}5 Multiplication-Sign 10{sup 50} erg, velocities {approx}3000 km s{sup -1}, and unbound material masses {approx}> 6 M{sub Sun} are possible in a rapidly rotating 16 M{sub Sun} main-sequence progenitor star. Further work is needed to constrain the values of these parameters, to identify the likely outcomes in more plausible and massive LRGB progenitors, and to explore nucleosynthetic implications.

OSTI ID:
22034467
Journal Information:
Astrophysical Journal, Vol. 750, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English