skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: RADIUS-DEPENDENT ANGULAR MOMENTUM EVOLUTION IN LOW-MASS STARS. I

Journal Article · · Astrophysical Journal
 [1];  [2]
  1. Institut fuer Astrophysik, Georg-August-Universitaet, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)
  2. Imperial College London, 1010 Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom)

Angular momentum evolution in low-mass stars is determined by initial conditions during star formation, stellar structure evolution, and the behavior of stellar magnetic fields. Here we show that the empirical picture of angular momentum evolution arises naturally if rotation is related to magnetic field strength instead of to magnetic flux and formulate a corrected braking law based on this. Angular momentum evolution then becomes a strong function of stellar radius, explaining the main trends observed in open clusters and field stars at a few Gyr: the steep transition in rotation at the boundary to full convection arises primarily from the large change in radius across this boundary and does not require changes in dynamo mode or field topology. Additionally, the data suggest transient core-envelope decoupling among solar-type stars and field saturation at longer periods in very low mass stars. For solar-type stars, our model is also in good agreement with the empirical Skumanich law. Finally, in further support of the theory, we show that the predicted age at which low-mass stars spin down from the saturated to unsaturated field regimes in our model corresponds remarkably well to the observed lifetime of magnetic activity in these stars.

OSTI ID:
22011837
Journal Information:
Astrophysical Journal, Vol. 746, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English

Similar Records

AGE dependence of wind properties for solar-type stars: a 3D study
Journal Article · Thu Dec 01 00:00:00 EST 2016 · Astrophysical Journal · OSTI ID:22011837

Dynamical model for spindown of solar-type stars
Journal Article · Thu Dec 01 00:00:00 EST 2016 · Astrophysical Journal · OSTI ID:22011837

Evaluating gyrochronology on the zero-age-main-sequence: rotation periods in the southern open cluster Blanco 1 from the Kelt-South survey
Journal Article · Mon Feb 10 00:00:00 EST 2014 · Astrophysical Journal · OSTI ID:22011837