skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A SURVEY OF ALKALI LINE ABSORPTION IN EXOPLANETARY ATMOSPHERES

Journal Article · · Astrophysical Journal
;  [1]; ; ;  [2]
  1. Van Vleck Observatory, Astronomy Department, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459 (United States)
  2. Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

We obtained over 90 hr of spectroscopic observations of four exoplanetary systems with the Hobby-Eberly Telescope. Observations were taken in transit and out of transit, and we analyzed the differenced spectra-i.e., the transmission spectra-to inspect it for absorption at the wavelengths of the neutral sodium (Na I) doublet at {lambda}{lambda}5889, 5895 and neutral potassium (K I) at {lambda}7698. We used the transmission spectrum at Ca I {lambda}6122-which shows strong stellar absorption but is not an alkali metal resonance line that we expect to show significant absorption in these atmospheres-as a control line to examine our measurements for systematic errors. We use an empirical Monte Carlo method to quantify these systematic errors. In a reanalysis of the same data set using a reduction and analysis pipeline that was derived independently, we confirm the previously seen Na I absorption in HD 189733b at a level of (- 5.26 {+-} 1.69) Multiplication-Sign 10{sup -4} (the average value over a 12 A integration band to be consistent with previous authors). Additionally, we tentatively confirm the Na I absorption seen in HD 209458b (independently by multiple authors) at a level of (- 2.63 {+-} 0.81) Multiplication-Sign 10{sup -4}, though the interpretation is less clear. Furthermore, we find Na I absorption of (- 3.16 {+-} 2.06) Multiplication-Sign 10{sup -4} at <3{sigma} in HD 149026b; features apparent in the transmission spectrum are consistent with real absorption and indicate this may be a good target for future observations to confirm. No other results (Na I in HD 147506b and Ca I and K I in all four targets) are significant to {>=}3{sigma}, although we observe some features that we argue are primarily artifacts.

OSTI ID:
22004392
Journal Information:
Astrophysical Journal, Vol. 743, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English