skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE HEAVY-ELEMENT MASSES OF EXTRASOLAR GIANT PLANETS, REVEALED

Abstract

We investigate a population of transiting planets that receive relatively modest stellar insolation, indicating equilibrium temperatures <1000 K, and for which the heating mechanism that inflates hot Jupiters does not appear to be significantly active. We use structural evolution models to infer the amount of heavy elements within each of these planets. There is a correlation between the stellar metallicity and the mass of heavy elements in its transiting planet(s). It appears that all giant planets possess a minimum of {approx}10-15 Earth masses of heavy elements, with planets around metal-rich stars having larger heavy-element masses. There is also an inverse relationship between the mass of the planet and the metal enrichment (Z{sub pl}/Z{sub star}), which appears to have little dependency on the metallicity of the star. Saturn- and Jupiter-like enrichments above solar composition are a hallmark of all the gas giants in the sample, even planets of several Jupiter masses. These relationships provide an important constraint on planet formation and suggest large amounts of heavy elements within planetary H/He envelopes. We suggest that the observed correlation can soon also be applied to inflated planets, such that the interior heavy-element abundance of these planets could be estimated, yielding better constraints onmore » their interior energy sources. We point to future directions for planetary population synthesis models and suggest future correlations. This appears to be the first evidence that extrasolar giant planets, as a class, are enhanced in heavy elements.« less

Authors:
Publication Date:
OSTI Identifier:
21562511
Resource Type:
Journal Article
Journal Name:
Astrophysical Journal Letters
Additional Journal Information:
Journal Volume: 736; Journal Issue: 2; Other Information: DOI: 10.1088/2041-8205/736/2/L29; Journal ID: ISSN 2041-8205
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; CORRELATIONS; ELEMENT ABUNDANCE; ENRICHMENT; MASS; METALS; PLANETS; ABUNDANCE; ELEMENTS

Citation Formats

Miller, Neil, and Fortney, Jonathan J., E-mail: neil@astro.ucsc.edu. THE HEAVY-ELEMENT MASSES OF EXTRASOLAR GIANT PLANETS, REVEALED. United States: N. p., 2011. Web. doi:10.1088/2041-8205/736/2/L29.
Miller, Neil, & Fortney, Jonathan J., E-mail: neil@astro.ucsc.edu. THE HEAVY-ELEMENT MASSES OF EXTRASOLAR GIANT PLANETS, REVEALED. United States. https://doi.org/10.1088/2041-8205/736/2/L29
Miller, Neil, and Fortney, Jonathan J., E-mail: neil@astro.ucsc.edu. 2011. "THE HEAVY-ELEMENT MASSES OF EXTRASOLAR GIANT PLANETS, REVEALED". United States. https://doi.org/10.1088/2041-8205/736/2/L29.
@article{osti_21562511,
title = {THE HEAVY-ELEMENT MASSES OF EXTRASOLAR GIANT PLANETS, REVEALED},
author = {Miller, Neil and Fortney, Jonathan J., E-mail: neil@astro.ucsc.edu},
abstractNote = {We investigate a population of transiting planets that receive relatively modest stellar insolation, indicating equilibrium temperatures <1000 K, and for which the heating mechanism that inflates hot Jupiters does not appear to be significantly active. We use structural evolution models to infer the amount of heavy elements within each of these planets. There is a correlation between the stellar metallicity and the mass of heavy elements in its transiting planet(s). It appears that all giant planets possess a minimum of {approx}10-15 Earth masses of heavy elements, with planets around metal-rich stars having larger heavy-element masses. There is also an inverse relationship between the mass of the planet and the metal enrichment (Z{sub pl}/Z{sub star}), which appears to have little dependency on the metallicity of the star. Saturn- and Jupiter-like enrichments above solar composition are a hallmark of all the gas giants in the sample, even planets of several Jupiter masses. These relationships provide an important constraint on planet formation and suggest large amounts of heavy elements within planetary H/He envelopes. We suggest that the observed correlation can soon also be applied to inflated planets, such that the interior heavy-element abundance of these planets could be estimated, yielding better constraints on their interior energy sources. We point to future directions for planetary population synthesis models and suggest future correlations. This appears to be the first evidence that extrasolar giant planets, as a class, are enhanced in heavy elements.},
doi = {10.1088/2041-8205/736/2/L29},
url = {https://www.osti.gov/biblio/21562511}, journal = {Astrophysical Journal Letters},
issn = {2041-8205},
number = 2,
volume = 736,
place = {United States},
year = {Mon Aug 01 00:00:00 EDT 2011},
month = {Mon Aug 01 00:00:00 EDT 2011}
}