skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: RADIO AND X-RAY OBSERVATIONS OF THE TYPE Ic SN 2007gr REVEAL AN ORDINARY, NON-RELATIVISTIC EXPLOSION

Abstract

We present extensive radio and X-ray observations of the nearby Type Ic SN 2007gr in NGC 1058 obtained with the Very Large Array (VLA) and the Chandra X-ray Observatory and spanning 5 to 150 days after explosion. Through our detailed modeling of these data, we estimate the properties of the blast wave and the circumstellar environment. We find evidence for a freely expanding and non-relativistic explosion with an average blast wave velocity, v-bar {approx}0.2c, and a total internal energy for the radio emitting material of E {approx} 2 x 10{sup 46} erg assuming equipartition of energy between electrons and magnetic fields ({epsilon}{sub e} = {epsilon}{sub B} = 0.1). The temporal and spectral evolution of the radio emission points to a stellar wind-blown environment shaped by a steady progenitor mass loss rate of M-dot {approx}6x10{sup -7} M{sub sun} yr{sup -1} (wind velocity, v{sub w} = 10{sup 3} km s{sup -1}). These parameters are fully consistent with those inferred for other SNe Ibc and are in line with the expectations for an ordinary, homologous SN explosion. Our results are at odds with those of Paragi et al. who recently reported evidence for a relativistic blast wave in SN 2007gr based on theirmore » claim that the radio emission was resolved away in a low signal-to-noise Very Long Baseline Interferometry (VLBI) observation. Here we show that the exotic physical scenarios required to explain the claimed relativistic velocity-extreme departures from equipartition and/or a highly collimated outflow-are excluded by our detailed VLA radio observations. Moreover, we present an independent analysis of the VLBI data and propose that a modest loss of phase coherence provides a more natural explanation for the apparent flux density loss which is evident on both short and long baselines. We conclude that SN 2007gr is an ordinary Type Ibc supernova.« less

Authors:
 [1];  [2];  [3];  [4];  [5]
  1. Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)
  2. Max-Planck-Institute for Radio Astronomy, Auf dem Hugel 69, 53121 Bonn (Germany)
  3. Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)
  4. University of Virginia, Astronomy Department, Charlottesville, VA 22904 (United States)
  5. Hartebeesthoek Radio Observatory, P.O. Box 443, Krugersdorpa, 1740 (South Africa)
Publication Date:
OSTI Identifier:
21474392
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 725; Journal Issue: 1; Other Information: DOI: 10.1088/0004-637X/725/1/922
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; COSMIC GAMMA BURSTS; EMISSION; EXPLOSIONS; FLUX DENSITY; INTERFEROMETRY; MAGNETIC FIELDS; RELATIVISTIC RANGE; STELLAR WINDS; SUPERNOVAE; X RADIATION; BINARY STARS; COSMIC RADIATION; ELECTROMAGNETIC RADIATION; ENERGY RANGE; ERUPTIVE VARIABLE STARS; IONIZING RADIATIONS; PRIMARY COSMIC RADIATION; RADIATIONS; STARS; STELLAR ACTIVITY; VARIABLE STARS

Citation Formats

Soderberg, A. M., Brunthaler, A., Nakar, E., Chevalier, R. A., and Bietenholz, M. F.. RADIO AND X-RAY OBSERVATIONS OF THE TYPE Ic SN 2007gr REVEAL AN ORDINARY, NON-RELATIVISTIC EXPLOSION. United States: N. p., 2010. Web. doi:10.1088/0004-637X/725/1/922.
Soderberg, A. M., Brunthaler, A., Nakar, E., Chevalier, R. A., & Bietenholz, M. F.. RADIO AND X-RAY OBSERVATIONS OF THE TYPE Ic SN 2007gr REVEAL AN ORDINARY, NON-RELATIVISTIC EXPLOSION. United States. doi:10.1088/0004-637X/725/1/922.
Soderberg, A. M., Brunthaler, A., Nakar, E., Chevalier, R. A., and Bietenholz, M. F.. 2010. "RADIO AND X-RAY OBSERVATIONS OF THE TYPE Ic SN 2007gr REVEAL AN ORDINARY, NON-RELATIVISTIC EXPLOSION". United States. doi:10.1088/0004-637X/725/1/922.
@article{osti_21474392,
title = {RADIO AND X-RAY OBSERVATIONS OF THE TYPE Ic SN 2007gr REVEAL AN ORDINARY, NON-RELATIVISTIC EXPLOSION},
author = {Soderberg, A. M. and Brunthaler, A. and Nakar, E. and Chevalier, R. A. and Bietenholz, M. F.},
abstractNote = {We present extensive radio and X-ray observations of the nearby Type Ic SN 2007gr in NGC 1058 obtained with the Very Large Array (VLA) and the Chandra X-ray Observatory and spanning 5 to 150 days after explosion. Through our detailed modeling of these data, we estimate the properties of the blast wave and the circumstellar environment. We find evidence for a freely expanding and non-relativistic explosion with an average blast wave velocity, v-bar {approx}0.2c, and a total internal energy for the radio emitting material of E {approx} 2 x 10{sup 46} erg assuming equipartition of energy between electrons and magnetic fields ({epsilon}{sub e} = {epsilon}{sub B} = 0.1). The temporal and spectral evolution of the radio emission points to a stellar wind-blown environment shaped by a steady progenitor mass loss rate of M-dot {approx}6x10{sup -7} M{sub sun} yr{sup -1} (wind velocity, v{sub w} = 10{sup 3} km s{sup -1}). These parameters are fully consistent with those inferred for other SNe Ibc and are in line with the expectations for an ordinary, homologous SN explosion. Our results are at odds with those of Paragi et al. who recently reported evidence for a relativistic blast wave in SN 2007gr based on their claim that the radio emission was resolved away in a low signal-to-noise Very Long Baseline Interferometry (VLBI) observation. Here we show that the exotic physical scenarios required to explain the claimed relativistic velocity-extreme departures from equipartition and/or a highly collimated outflow-are excluded by our detailed VLA radio observations. Moreover, we present an independent analysis of the VLBI data and propose that a modest loss of phase coherence provides a more natural explanation for the apparent flux density loss which is evident on both short and long baselines. We conclude that SN 2007gr is an ordinary Type Ibc supernova.},
doi = {10.1088/0004-637X/725/1/922},
journal = {Astrophysical Journal},
number = 1,
volume = 725,
place = {United States},
year = 2010,
month =
}
  • We propose an off-axis relativistic jet model for the Type Ic supernova SN 2007gr. Most of the energy ({approx}2 x 10{sup 51} erg) in the explosion is contained in non-relativistic ejecta which produces the supernova (SN). The optical emission comes from the decay process of {sup 56}Ni synthesized in the bulk SN ejecta. Only very little energy ({approx}10{sup 48} erg) is contained in the relativistic jet with initial velocity about 0.94 times the speed of light. The radio and X-ray emission comes from this relativistic jet. With some typical parameters of a Wolf-Rayet star (progenitor of Type Ic SN), i.e.,more » the mass-loss rate M-dot =1.0x10{sup -5} M{sub sun} yr{sup -1} and the wind velocity v{sub w} = 1.5 x 10{sup 3} km s{sup -1} together with an observing angle of {theta}{sub obs} = 63.{sup 0}3, we can obtain multiband light curves that fit the observations well. All the observed data are consistent with our model. Thus, we conclude that SN 2007gr contains a weak relativistic jet and we observe the jet from off-axis.« less
  • We present extensive optical observations of the normal Type Ic supernova (SN) 2007gr, spanning from about one week before maximum light to more than one year thereafter. The optical light and color curves of SN 2007gr are very similar to those of the broad-lined Type Ic SN 2002ap, but the spectra show remarkable differences. The optical spectra of SN 2007gr are characterized by unusually narrow lines, prominent carbon lines, and slow evolution of the line velocity after maximum light. The earliest spectrum (taken at t = –8 days) shows a possible signature of helium (He I λ5876 at a velocitymore » of ∼19,000 km s{sup –1}). Moreover, the larger intensity ratio of the [O I] λ6300 and λ6364 lines inferred from the early nebular spectra implies a lower opacity of the ejecta shortly after the explosion. These results indicate that SN 2007gr perhaps underwent a less energetic explosion of a smaller-mass Wolf-Rayet star (∼8-9 M{sub ☉}) in a binary system, as favored by an analysis of the progenitor environment through pre-explosion and post-explosion Hubble Space Telescope images. In the nebular spectra, asymmetric double-peaked profiles can be seen in the [O I] λ6300 and Mg I] λ4571 lines. We suggest that the two peaks are contributed by the blueshifted and rest-frame components. The similarity in velocity structure and the different evolution of the strength of the two components favor an aspherical explosion with the ejecta distributed in a torus or disk-like geometry, but inside the ejecta the O and Mg have different distributions.« less
  • We present extensive radio observations of the nearby Type Ibc supernovae (SNe Ibc) 2004cc, 2004dk, and 2004gq spanning {Delta}t Almost-Equal-To 8-1900 days after explosion. Using a dynamical model developed for synchrotron emission from a slightly decelerated shock wave, we estimate the velocity and energy of the fastest ejecta and the density profile of the circumstellar medium. The shock waves of all three supernovae are characterized by non-relativistic velocities of v-bar approx. (0.1-25)c and associated energies of E Almost-Equal-To (2-10) Multiplication-Sign 10{sup 47} erg, in line with the expectations for a typical homologous explosion. Smooth circumstellar density profiles are indicated bymore » the early radio data and we estimate the progenitor mass-loss rates to be M-dot approx. (0.6-13) x 10{sup -5} M{sub Sun} yr{sup -1} (wind velocity, v{sub w} = 10{sup 3} km s{sup -1}). These estimates approach the saturation limit ( M-dot {approx}10{sup -4} M{sub Sun} yr{sup -1}) for line-driven winds from Wolf-Rayet stars, the favored progenitors of SNe Ibc including those associated with long-duration gamma-ray bursts. Intriguingly, at later epochs all three supernovae show evidence for abrupt radio variability that we attribute to large density modulations (factor of {approx}3-6) at circumstellar radii of r Almost-Equal-To (1-50) Multiplication-Sign 10{sup 16} cm. If due to variable mass loss, these modulations are associated with progenitor activity on a timescale of {approx}10-100 years before explosion. We consider these results in the context of variable mass-loss mechanisms including wind clumping, metallicity-independent continuum-driven ejections, and binary-induced modulations. It may also be possible that the SN shock waves are dynamically interacting with wind termination shocks; however, this requires the environment to be highly pressurized and/or the progenitor to be rapidly rotating prior to explosion. The proximity of the density modulations to the explosion sites may suggest a synchronization between unusual progenitor mass loss and the SN explosion, reminiscent of Type IIn supernovae. This study underscores the utility of radio observations for tracing the final evolutionary stage(s) of SN progenitor systems.« less
  • We present extensive radio and X-ray observations of SN 2012au, an energetic, radio-luminous supernova of Type Ib that exhibits multi-wavelength properties bridging subsets of hydrogen-poor superluminous supernovae, hypernovae, and normal core-collapse supernovae. The observations closely follow models of synchrotron emission from a shock-heated circumburst medium that has a wind density profile (ρ∝r {sup –2}). We infer a sub-relativistic velocity for the shock wave v ≈ 0.2 c and a radius of r ≈ 1.4 × 10{sup 16}cm at 25 days after the estimated date of explosion. For a wind velocity of 1000 km s{sup –1}, we determine the mass-loss ratemore » of the progenitor to be M-dot =3.6×10{sup −6} M{sub ⊙} yr{sup −1}, consistent with the estimates from X-ray observations. We estimate the total internal energy of the radio-emitting material to be E ≈ 10{sup 47} erg, which is intermediate to SN 1998bw and SN 2002ap. The evolution of the radio light curve of SN 2012au is in agreement with its interaction with a smoothly distributed circumburst medium and the absence of stellar shells ejected from previous outbursts out to r ≈ 10{sup 17} cm from the supernova site. We conclude that the bright radio emission from SN 2012au was not dissimilar from other core-collapse supernovae despite its extraordinary optical properties, and that the evolution of the SN 2012au progenitor star was relatively quiet, marked with a steady mass loss, during the final years preceding explosion.« less
  • Long duration γ-ray bursts are a rare subclass of stripped-envelope core-collapse supernovae (SNe) that launch collimated relativistic outflows (jets). All γ-ray-burst-associated SNe are spectroscopically Type Ic, with broad-lines, but the fraction of broad-lined SNe Ic harboring low-luminosity γ-ray bursts remains largely unconstrained. Some SNe should be accompanied by off-axis γ-ray burst jets that initially remain invisible, but then emerge as strong radio sources (as the jets decelerate). However, this critical prediction of the jet model for γ-ray bursts has yet to be verified observationally. Here, we present K. G. Jansky Very Large Array observations of 15 broad-lined SNe of Type Ic discovered by the Palomar Transient Factory in an untargeted manner. Most of the SNe in our sample exclude radio emission observationally similar to that of the radio-loud, relativistic SN 1998bw. We constrain the fraction of 1998bw-like broad-lined SNe Ic to bemore » $$\lesssim 41 \% $$ (99.865% confidence). Most of the events in our sample also exclude off-axis jets similar to GRB 031203 and GRB 030329, but we cannot rule out off-axis γ-ray bursts expanding in a low-density wind environment. Three SNe in our sample are detected in the radio. PTF11qcj and PTF14dby show late-time radio emission with average ejecta speeds of ≈0.3–0.4 c, on the dividing line between relativistic and "ordinary" SNe. The speed of PTF11cmh radio ejecta is poorly constrained. We estimate that $$\lesssim 85 \% $$ (99.865% confidence) of the broad-lined SNe Ic in our sample may harbor off-axis γ-ray bursts expanding in media with densities in the range probed by this study.« less