skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: POPULATION SYNTHESIS OF COMMON ENVELOPE MERGERS. I. GIANT STARS WITH STELLAR OR SUBSTELLAR COMPANIONS

Journal Article · · Astrophysical Journal
 [1];  [2]; ;  [3]
  1. Department of Physics, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881 (United States)
  2. Department of Physics, University of Alberta, 11322-89 Ave, Edmonton AB, T6G 2G7 (Canada)
  3. Department of Physics and Astronomy, Northwestern University, 2131 Tech Drive, Evanston, IL 60208 (United States)

Using a population synthesis technique, we have calculated detailed models of the present-day field population of objects that have resulted from the merger of a giant primary and a main-sequence or brown dwarf secondary during common envelope evolution. We used a grid of 116 stellar and 32 low-mass/brown dwarf models, a crude model of the merger process, and followed the angular momentum evolution of the binary orbit and the primary's rotation prior to the merger, as well as the merged object's rotation after the merger. We find that present-day merged objects that are observable as giant stars or core-helium-burning stars in our model population constitute between 0.24% and 0.33% of the initial population of ZAMS binaries, depending upon the input parameters chosen. The median projected rotational velocity of these merged objects is {approx}16 km s{sup -1}, an order of magnitude higher than the median projected rotational velocity in a model population of normal single stars calculated using the same stellar models and initial mass function. The masses of the merged objects are typically less than {approx}2 M {sub sun}, with a median mass of 1.28 M {sub sun}, which is slightly more than, but not significantly different from, their normal single star counterparts. The luminosities in our merged object population range from {approx}10to100 L {sub sun}, with a strong peak in the luminosity distribution at {approx}60 L {sub sun}, since the majority of the merged objects (57%) lie on the horizontal branch at the present epoch. The results of our population synthesis study are discussed in terms of possible observational counterparts either directly involving the high rotational velocity of the merger product or indirectly, via the effect of rotation on envelope abundances and on the amount and distribution of circumstellar matter.

OSTI ID:
21460024
Journal Information:
Astrophysical Journal, Vol. 720, Issue 2; Other Information: DOI: 10.1088/0004-637X/720/2/1752; ISSN 0004-637X
Country of Publication:
United States
Language:
English

Similar Records

Contribution of High-Mass Black Holes to Mergers of Compact Binaries
Journal Article · Sat May 01 00:00:00 EDT 1999 · Astrophysical Journal · OSTI ID:21460024

CHARACTERIZING THE GALACTIC WHITE DWARF BINARY POPULATION WITH SPARSELY SAMPLED RADIAL VELOCITY DATA
Journal Article · Fri Jun 01 00:00:00 EDT 2012 · Astrophysical Journal · OSTI ID:21460024

ON THE DISTRIBUTION OF ORBITAL ECCENTRICITIES FOR VERY LOW-MASS BINARIES
Journal Article · Wed Jun 01 00:00:00 EDT 2011 · Astrophysical Journal · OSTI ID:21460024