skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CHARACTERIZING THE CHEMISTRY OF THE MILKY WAY STELLAR HALO: DETAILED CHEMICAL ANALYSIS OF A METAL-POOR STELLAR STREAM ,

Abstract

We present the results of a detailed abundance analysis of one of the confirmed building blocks of the Milky Way stellar halo, a kinematically coherent metal-poor stellar stream. We have obtained high-resolution and high signal-to-noise spectra of 12 probable stream members using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory and the 2dCoude spectrograph on the Smith Telescope at McDonald Observatory. We have derived abundances or upper limits for 51 species of 46 elements in each of these stars. The stream members show a range of metallicity (-3.4 < [Fe/H] <-1.5) but are otherwise chemically homogeneous, with the same star-to-star dispersion in [X/Fe] as the rest of the halo. This implies that, in principle, a significant fraction of the Milky Way stellar halo could have formed from accreted systems like the stream. The stream stars show minimal evolution in the alpha or Fe-group elements over the range of metallicity. This stream is enriched with material produced by the main and weak components of the rapid neutron-capture process and shows no evidence for enrichment by the slow neutron-capture process.

Authors:
;  [1]; ; ;  [2]
  1. Department of Astronomy, University of Texas at Austin, 1 University Station, C1400, Austin, TX 78712-0259 (United States)
  2. Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)
Publication Date:
OSTI Identifier:
21394350
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 711; Journal Issue: 2; Other Information: DOI: 10.1088/0004-637X/711/2/573
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ABUNDANCE; CHEMICAL ANALYSIS; METALS; MILKY WAY; NEUTRON REACTIONS; NUCLEOSYNTHESIS; SLOW NEUTRONS; STARS; TELESCOPES; BARYON REACTIONS; BARYONS; ELEMENTARY PARTICLES; ELEMENTS; FERMIONS; GALAXIES; HADRON REACTIONS; HADRONS; NEUTRONS; NUCLEAR REACTIONS; NUCLEON REACTIONS; NUCLEONS; SYNTHESIS

Citation Formats

Roederer, Ian U., Sneden, Christopher, Thompson, Ian B., Preston, George W., and Shectman, Stephen A., E-mail: iur@astro.as.utexas.ed. CHARACTERIZING THE CHEMISTRY OF THE MILKY WAY STELLAR HALO: DETAILED CHEMICAL ANALYSIS OF A METAL-POOR STELLAR STREAM ,. United States: N. p., 2010. Web. doi:10.1088/0004-637X/711/2/573.
Roederer, Ian U., Sneden, Christopher, Thompson, Ian B., Preston, George W., & Shectman, Stephen A., E-mail: iur@astro.as.utexas.ed. CHARACTERIZING THE CHEMISTRY OF THE MILKY WAY STELLAR HALO: DETAILED CHEMICAL ANALYSIS OF A METAL-POOR STELLAR STREAM ,. United States. doi:10.1088/0004-637X/711/2/573.
Roederer, Ian U., Sneden, Christopher, Thompson, Ian B., Preston, George W., and Shectman, Stephen A., E-mail: iur@astro.as.utexas.ed. 2010. "CHARACTERIZING THE CHEMISTRY OF THE MILKY WAY STELLAR HALO: DETAILED CHEMICAL ANALYSIS OF A METAL-POOR STELLAR STREAM ,". United States. doi:10.1088/0004-637X/711/2/573.
@article{osti_21394350,
title = {CHARACTERIZING THE CHEMISTRY OF THE MILKY WAY STELLAR HALO: DETAILED CHEMICAL ANALYSIS OF A METAL-POOR STELLAR STREAM ,},
author = {Roederer, Ian U. and Sneden, Christopher and Thompson, Ian B. and Preston, George W. and Shectman, Stephen A., E-mail: iur@astro.as.utexas.ed},
abstractNote = {We present the results of a detailed abundance analysis of one of the confirmed building blocks of the Milky Way stellar halo, a kinematically coherent metal-poor stellar stream. We have obtained high-resolution and high signal-to-noise spectra of 12 probable stream members using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory and the 2dCoude spectrograph on the Smith Telescope at McDonald Observatory. We have derived abundances or upper limits for 51 species of 46 elements in each of these stars. The stream members show a range of metallicity (-3.4 < [Fe/H] <-1.5) but are otherwise chemically homogeneous, with the same star-to-star dispersion in [X/Fe] as the rest of the halo. This implies that, in principle, a significant fraction of the Milky Way stellar halo could have formed from accreted systems like the stream. The stream stars show minimal evolution in the alpha or Fe-group elements over the range of metallicity. This stream is enriched with material produced by the main and weak components of the rapid neutron-capture process and shows no evidence for enrichment by the slow neutron-capture process.},
doi = {10.1088/0004-637X/711/2/573},
journal = {Astrophysical Journal},
number = 2,
volume = 711,
place = {United States},
year = 2010,
month = 3
}
  • A few rare halo giants in the range [Fe/H] {approx_equal} -2.9 {+-} 0.3 exhibit r-process element abundances that vary as a group by factors up to [r/Fe] {approx}80, relative to those of the iron peak and below. Yet, the astrophysical production site of these r-process elements remains unclear. We report initial results from four years of monitoring the radial velocities of 17 r-process-enhanced metal-poor giants to detect and characterize binaries in this sample. We find three (possibly four) spectroscopic binaries with orbital periods and eccentricities that are indistinguishable from those of Population I binaries with giant primaries, and which exhibitmore » no signs that the secondary components have passed through the asymptotic giant branch stage of evolution or exploded as supernovae. The other 14 stars in our sample appear to be single-including the prototypical r-process-element-enhanced star CS 22892-052, which is also enhanced in carbon, but not in s-process elements. We conclude that the r-process (and potentially carbon) enhancement of these stars was not a local event due to mass transfer or winds from a binary companion, but was imprinted on the natal molecular clouds of these (single and binary) stars by an external source. These stars are thus spectacular chemical tracers of the inhomogeneous nature of the early Galactic halo system.« less
  • Carbon-enhanced metal-poor (CEMP) stars in the halo components of the Milky Way are explored, based on accurate determinations of the carbon-to-iron ([C/Fe]) abundance ratios and kinematic quantities for over 30,000 calibration stars from the Sloan Digital Sky Survey. Using our present criterion that low-metallicity stars exhibiting [C/Fe] ratios ({sup c}arbonicity{sup )} in excess of [C/Fe] =+0.7 are considered CEMP stars, the global frequency of CEMP stars in the halo system for [Fe/H] <-1.5 is 8%, for [Fe/H] <-2.0 it is 12%, and for [Fe/H] <-2.5 it is 20%. We also confirm a significant increase in the level of carbon enrichmentmore » with declining metallicity, growing from ([C/Fe]) {approx}+1.0 at [Fe/H] =-1.5 to ([C/Fe]) {approx}+1.7 at [Fe/H] =-2.7. The nature of the carbonicity distribution function (CarDF) changes dramatically with increasing distance above the Galactic plane, |Z|. For |Z| <5 kpc, relatively few CEMP stars are identified. For distances |Z| >5 kpc, the CarDF exhibits a strong tail toward high values, up to [C/Fe] > +3.0. We also find a clear increase in the CEMP frequency with |Z|. For stars with -2.0 < [Fe/H] <-1.5, the frequency grows from 5% at |Z| {approx}2 kpc to 10% at |Z| {approx}10 kpc. For stars with [Fe/H] <-2.0, the frequency grows from 8% at |Z| {approx}2 kpc to 25% at |Z| {approx}10 kpc. For stars with -2.0 < [Fe/H] <-1.5, the mean carbonicity is ([C/Fe]) {approx}+1.0 for 0 kpc < |Z| < 10 kpc, with little dependence on |Z|; for [Fe/H] <-2.0, ([C/Fe]) {approx}+1.5, again roughly independent of |Z|. Based on a statistical separation of the halo components in velocity space, we find evidence for a significant contrast in the frequency of CEMP stars between the inner- and outer-halo components-the outer halo possesses roughly twice the fraction of CEMP stars as the inner halo. The carbonicity distribution also differs between the inner-halo and outer-halo components-the inner halo has a greater portion of stars with modest carbon enhancement ([C/Fe] {approx}+0.5]); the outer halo has a greater portion of stars with large enhancements ([C/Fe] {approx}+2.0), although considerable overlap still exists. We interpret these results as due to the possible presence of additional astrophysical sources of carbon production associated with outer-halo stars, beyond the asymptotic giant-branch source that may dominate for inner-halo stars, with implications for the progenitors of these populations.« less
  • We explore the kinematics and orbital properties of a sample of 323 very metal-poor stars in the halo system of the Milky Way, selected from the high-resolution spectroscopic follow-up studies of Aoki et al. and Yong et al. The combined sample contains a significant fraction of carbon-enhanced metal-poor (CEMP) stars (22% or 29%, depending on whether a strict or relaxed criterion is applied for this definition). Barium abundances (or upper limits) are available for the great majority of the CEMP stars, allowing for their separation into the CEMP-s and CEMP-no subclasses. A new method to assign membership to the inner-more » and outer-halo populations of the Milky Way is developed, making use of the integrals of motion, and applied to determine the relative fractions of CEMP stars in these two subclasses for each halo component. Although limited by small-number statistics, the data suggest that the inner halo of the Milky Way exhibits a somewhat higher relative number of CEMP-s stars than CEMP-no stars (57% versus 43%), while the outer halo possesses a clearly higher fraction of CEMP-no stars than CEMP-s stars (70% versus 30%). Although larger samples of CEMP stars with known Ba abundances are required, this result suggests that the dominant progenitors of CEMP stars in the two halo components were different; massive stars for the outer halo, and intermediate-mass stars in the case of the inner halo.« less
  • We show that there is a low metallicity tidal stream that runs along l = 143{sup o} in the South Galactic Cap, about 34 kpc from the Sun, discovered from SEGUE stellar velocities. Since the most concentrated detections are in the Cetus constellation, and the orbital path is nearly polar, we name it the Cetus Polar Stream (CPS). Although it is spatially coincident with the Sgr dwarf trailing tidal tail at b = -70{sup o}, the metallicities ([Fe/H] = -2.1), ratio of blue straggler to blue horizontal branch stars, and velocities of the CPS stars differ from Sgr. Some CPSmore » stars may contaminate previous samples of Sgr dwarf tidal debris. The unusual globular cluster NGC 5824 is located along an orbit fit to the CPS, with the correct radial velocity.« less
  • Observations of the lengthy tidal streams produced by the destruction of the Sagittarius dwarf spheroidal (Sgr dSph) are capable of providing strong constraints on the shape of the Galactic gravitational potential. However, previous work, based on modeling different stream properties in axisymmetric Galactic models, has yielded conflicting results: while the angular precession of the Sgr leading arm is most consistent with a spherical or slightly oblate halo, the radial velocities of stars in this arm are reproduced only by prolate halo models. We demonstrate that this apparent paradox can be resolved by instead adopting a triaxial potential. Our new Galacticmore » halo model, which simultaneously fits all well-established phase space constraints from the Sgr stream, provides the first conclusive evidence for, and tentative measurement of, triaxiality in an individual dark matter halo. The Milky Way halo within {approx}60 kpc is best characterized by a minor/major axis ratio of the isovelocity contours c/a {approx} 0.67, intermediate/major axis ratio b/a {approx} 0.83, and triaxiality parameter T {approx} 0.56. In this model, the minor axis of the dark halo is coincident with the Galactic X-axis connecting the Sun and the Galactic center to within {approx}15 deg., while the major axis also lies in the Galactic plane, approximately along the Galactic Y-axis.« less