skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A SEARCH FOR WIDE COMPANIONS TO THE EXTRASOLAR PLANETARY SYSTEM HR 8799

Journal Article · · Astrophysical Journal
;  [1]
  1. Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

The extrasolar planetary system around HR 8799 is the first multiplanet system ever imaged. It is also, by a wide margin, the highest mass system with >27 Jupiters of planetary mass past 25 AU. This is a remarkable system with no analog in any other known planetary system. In the first part of this paper, we investigated the nature of two faint objects imaged near the system. These objects are considerably fainter (H = 20.4 and 21.6 mag) and more distant (projected separations of 612 and 534 AU) than the three known planetary companions b, c, and d (68-24 AU). It is possible that these two objects could be lower mass planets (of mass approx5M{sub Jup} and approx3M{sub Jup}) that have been scattered to wider orbits. We make the first direct comparison of newly reduced archival Gemini adaptive optics images to archival Hubble Space Telescope/NICMOS images. With nearly a decade between these epochs, we can accurately assess the proper motion nature of each candidate companion. We find that both objects are unbound to HR 8799 and are background. We estimate that HR 8799 has no companions of H < 22 from approx5'' to 15''. Any scattered giant planets in the HR 8799 system are >600 AU or less than 3 M{sub Jup} in mass. In the second part of this paper, we search for any sign of a 'reverse parallax signature' in the astrometric residuals of HR 8799b. No such signal was found and we conclude, as expected, that HR 8799b has the same parallax as HR 8799A. In the third part of this paper, we carry out a search for wider common proper motion objects. We found one object within 1 deg{sup 2} in the Palomar Observatory Sky Survey-Digitized Sky Survey images with similar (<2sigma) proper motions to HR 8799 at a separation of 4.'0. We conclude that it is not likely a bound companion to HR 8799 based on available photometry.

OSTI ID:
21392250
Journal Information:
Astrophysical Journal, Vol. 709, Issue 1; Other Information: DOI: 10.1088/0004-637X/709/1/342; ISSN 0004-637X
Country of Publication:
United States
Language:
English