skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Zr{sub 2}Ir{sub 6}B with an eightfold superstructure of the cubic perovskite-like boride ZrIr{sub 3}B{sub 0.5}: Synthesis, crystal structure and bonding analysis

Journal Article · · Journal of Solid State Chemistry
 [1]
  1. Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen (Germany)

Single phase powder samples and single crystals of Zr{sub 2}Ir{sub 6}B were successfully synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. Superstructure reflections were observed both on powder and on single crystal diffraction data, leading to an eightfold superstructure of ZrIr{sub 3}B{sub x} phase. The new phase, which has a metallic luster, crystallizes in space group Fm3-barm (no. 225) with the lattice parameters a=7.9903(4) A, V=510.14(4) A{sup 3}. Its crystal structure was refined on the basis of powder as well as single crystal data. The single crystal refinement converged to R{sub 1}=0.0239 and wR{sub 2}=0.0624 for all 88 unique reflections and 6 parameters. Zr{sub 2}Ir{sub 6}B is isotypic to Ti{sub 2}Rh{sub 6}B and its structure can be described as a defect double perovskite, A{sub 2}BB'O{sub 6}, where the A site is occupied by zirconium, the B site by boron, the O site by iridium but the B' site is vacant, leading to the formation of empty and boron-filled octahedral Ir{sub 6} clusters. According to the result of tight-binding electronic structure calculations, Ir-B and Ir-Zr interactions are mainly responsible for the structural stability of the phase. According to COHP bonding analysis, the strongest bonding occurs for the Ir-B contacts, and the Ir-Ir bonding within the empty clusters is two times stronger than that in the BIr{sub 6} octahedra. - Graphical abstract: Zr{sub 2}Ir{sub 6}B crystallizes with an eightfold superstructure of the already reported simple cubic perovskite ZrIr{sub 3}B{sub x}. According to the result of tight-binding electronic structure calculations, Ir-B and Ir-Zr interactions are mainly responsible for its structural stability, and the Ir-Ir bonding within the empty Ir{sub 6} clusters is two times stronger than that in the BIr{sub 6} octahedra.

OSTI ID:
21372553
Journal Information:
Journal of Solid State Chemistry, Vol. 183, Issue 4; Other Information: DOI: 10.1016/j.jssc.2010.01.026; PII: S0022-4596(10)00040-X; Copyright (c) 2010 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; ISSN 0022-4596
Country of Publication:
United States
Language:
English