skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A high order kinetic flux-vector splitting method for the reduced five-equation model of compressible two-fluid flows

Journal Article · · Journal of Computational Physics
 [1];  [1]
  1. Department of Mathematics, COMSATS Institute of Information Technology, Plot No. 30, H-8/1 Islamabad (Pakistan)

We present a high order kinetic flux-vector splitting (KFVS) scheme for the numerical solution of a conservative interface-capturing five-equation model of compressible two-fluid flows. This model was initially introduced by Wackers and Koren (2004) . The flow equations are the bulk equations, combined with mass and energy equations for one of the two fluids. The latter equation contains a source term in order to account for the energy exchange. We numerically investigate both one- and two-dimensional flow models. The proposed numerical scheme is based on the direct splitting of macroscopic flux functions of the system of equations. In two space dimensions the scheme is derived in a usual dimensionally split manner. The second order accuracy of the scheme is achieved by using MUSCL-type initial reconstruction and Runge-Kutta time stepping method. For validation, the results of our scheme are compared with those from the high resolution central scheme of Nessyahu and Tadmor . The accuracy, efficiency and simplicity of the KFVS scheme demonstrate its potential for modeling two-phase flows.

OSTI ID:
21333898
Journal Information:
Journal of Computational Physics, Vol. 228, Issue 24; Other Information: DOI: 10.1016/j.jcp.2009.09.010; PII: S0021-9991(09)00495-1; Copyright (c) 2009 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9991
Country of Publication:
United States
Language:
English

Similar Records

A high-order kinetic flux-splitting method for the relativistic magnetohydrodynamics
Journal Article · Sun May 01 00:00:00 EDT 2005 · Journal of Computational Physics · OSTI ID:21333898

High-order multirate explicit time-stepping schemes for the baroclinic-barotropic split dynamics in primitive equations
Journal Article · Fri Feb 11 00:00:00 EST 2022 · Journal of Computational Physics · OSTI ID:21333898

A numerical scheme for ionizing shock waves
Journal Article · Sat Dec 10 00:00:00 EST 2005 · Journal of Computational Physics · OSTI ID:21333898