skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Analysis of char-slag interaction and near-wall particle segregation in entrained-flow gasification of coal

Abstract

The fate of carbon particles during entrained-flow gasification of coal in the slagging regime is analyzed. More specifically, the study addresses the relevance of segregation of carbon particles in a near-wall region of the gasifier to coal conversion. Segregation of carbon particles is analyzed considering the effects of turbulence- and swirl-promoted particle migration toward the wall, interaction of the impinging particles with the wall ash layer, coverage of the slag layer by refractory carbon particles, accumulation of carbon particles in a dense-dispersed phase near the wall of the gasifier. Operating conditions of the gasifier and slag properties may be combined so as to give rise to a variety of conversion regimes characterized by distinctively different patterns of carbon particles segregation. A simple 1D model of an entrained-flow gasifier has been developed based on the conceptual framework of carbon particle segregation. The model aims at providing a general assessment of the impact of the different patterns of carbon particle segregation on the course and extent of carbon gasification. A sensitivity analysis with reference to selected model parameters is performed to identify key processes controlling carbon segregation and their impact on the gasifier performance. (author)

Authors:
 [1];  [2]
  1. Dipartimento di Chimica, Universita degli Studi di Napoli Federico II, Complesso Universitario del Monte di Sant'Angelo, 80126 Napoli (Italy)
  2. Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II and Istituto di Ricerche sulla Combustione, CNR, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy)
Publication Date:
OSTI Identifier:
21305706
Resource Type:
Journal Article
Resource Relation:
Journal Name: Combustion and Flame; Journal Volume: 157; Journal Issue: 5; Other Information: Elsevier Ltd. All rights reserved
Country of Publication:
United States
Language:
English
Subject:
01 COAL, LIGNITE, AND PEAT; CARBON; COAL GASIFICATION; COAL; PARTICLES; SEGREGATION; CHARS; WALLS; SLAGS; ASHES; CONVERSION; LAYERS; SENSITIVITY ANALYSIS; BUILDUP; MOTION; PERFORMANCE; REFRACTORIES; TURBULENCE; ENTRAINMENT; ONE-DIMENSIONAL CALCULATIONS; MATHEMATICAL MODELS; Slagging; Entrained flow; Char-slag interactions

Citation Formats

Montagnaro, Fabio, and Salatino, Piero. Analysis of char-slag interaction and near-wall particle segregation in entrained-flow gasification of coal. United States: N. p., 2010. Web. doi:10.1016/J.COMBUSTFLAME.2009.12.006.
Montagnaro, Fabio, & Salatino, Piero. Analysis of char-slag interaction and near-wall particle segregation in entrained-flow gasification of coal. United States. doi:10.1016/J.COMBUSTFLAME.2009.12.006.
Montagnaro, Fabio, and Salatino, Piero. 2010. "Analysis of char-slag interaction and near-wall particle segregation in entrained-flow gasification of coal". United States. doi:10.1016/J.COMBUSTFLAME.2009.12.006.
@article{osti_21305706,
title = {Analysis of char-slag interaction and near-wall particle segregation in entrained-flow gasification of coal},
author = {Montagnaro, Fabio and Salatino, Piero},
abstractNote = {The fate of carbon particles during entrained-flow gasification of coal in the slagging regime is analyzed. More specifically, the study addresses the relevance of segregation of carbon particles in a near-wall region of the gasifier to coal conversion. Segregation of carbon particles is analyzed considering the effects of turbulence- and swirl-promoted particle migration toward the wall, interaction of the impinging particles with the wall ash layer, coverage of the slag layer by refractory carbon particles, accumulation of carbon particles in a dense-dispersed phase near the wall of the gasifier. Operating conditions of the gasifier and slag properties may be combined so as to give rise to a variety of conversion regimes characterized by distinctively different patterns of carbon particles segregation. A simple 1D model of an entrained-flow gasifier has been developed based on the conceptual framework of carbon particle segregation. The model aims at providing a general assessment of the impact of the different patterns of carbon particle segregation on the course and extent of carbon gasification. A sensitivity analysis with reference to selected model parameters is performed to identify key processes controlling carbon segregation and their impact on the gasifier performance. (author)},
doi = {10.1016/J.COMBUSTFLAME.2009.12.006},
journal = {Combustion and Flame},
number = 5,
volume = 157,
place = {United States},
year = 2010,
month = 5
}
  • Integrated gasification combined cycle (IGCC) is a potentially promising clean technology with an inherent advantage of low emissions, since the process removes contaminants before combustion instead of from flue gas after combustion, as in a conventional coal steam plant. In addition, IGCC has potential for cost-effective carbon dioxide capture. Availability and high capital costs are the main challenges to making IGCC technology more competitive and fully commercial. Experiences from demonstrated IGCC plants show that, in the gasification system, low availability is largely due to slag buildup in the gasifier and fouling in the syngas cooler downstream of the gasification system.more » In the entrained flow gasifiers used in IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter (as fly ash) is entrained with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. Therefore, it is preferable to minimize the quantity of fly ash and maximize slag. In addition, the hot raw syngas is cooled to convert any entrained molten fly slag to hardened solid fly ash prior to entering the syngas cooler. To improve gasification availability through better design and operation of the gasification process, better understanding of slag behavior and characteristics of the slagging process are needed. Slagging behavior is affected by char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio). The viscosity of the slag is used to characterize the behavior of the slag flow and is the dominating factor to determine the probability that ash particles will stick. Slag viscosity strongly depends on the temperature and chemical composition of the slag. Because coal has varying ash content and composition, different operating conditions are required to maintain the slag flow and limit problems downstream. This report briefly introduces the IGCC process, the gasification process, and the main types and operating conditions of entrained flow gasifiers used in IGCC plants. This report also discusses the effects of coal ash and slag properties on slag flow and its qualities required for the entrained flow gasifier. Finally this report will identify the key operating conditions affecting slag flow behaviors, including temperature, oxygen/coal ratio, and flux agents.« less
  • In the study, two fly ash samples from Texaco gasifiers were compared to coal char and the physical and chemical properties and reactivity of samples were investigated by scanning electron microscopy (SEM), SEM-energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), N{sub 2} and CO{sub 2} adsorption method, and isothermal thermogravimetric analysis. The main results were obtained. The carbon content of gasified fly ashes exhibited 31-37%, which was less than the carbon content of 58-59% in the feed coal. The fly ashes exhibited higher Brunauer-Emmett-Teller (BET) surface area, richer meso- and micropores, more disordered carbon crystalline structure, and better CO{sub 2} gasification reactivitymore » than coal char. Ashes in fly ashes occurred to agglomerate into larger spherical grains, while those in coal char do not agglomerate. The minerals in fly ashes, especial alkali and alkaline-earth metals, had a catalytic effect on gasification reactivity of fly ash carbon. In the low-temperature range, the gasification process of fly ashes is mainly in chemical control, while in the high-temperature range, it is mainly in gas diffusion control, which was similar to coal char. In addition, the carbon in fly ashes was partially gasified and activated by water vapor and exhibited higher BET surface area and better gasification activity. Consequently, the fact that these carbons in fly ashes from entrained flow gasifiers are reclaimed and reused will be considered to be feasible. 15 refs., 7 figs., 5 tabs.« less
  • A comprehensive model has been developed to analyze the multiphase flow and heat transfer in the radiant syngas cooler (RSC) of an industrial-scale entrained-flow coal gasification. The three-dimensional multiphase flow field and temperature field were reconstructed. The realizable {kappa}-{epsilon} turbulence model is applied to calculate the gas flow field, while the discrete random walk model is applied to trace the particles, and the interaction between the gas and the particle is considered using a two-way coupling model. The radiative properties of syngas mixture are calculated by weighted-sum-of-gray-gases model (WSGGM). The Ranz-Marshall correlation for the Nusselt number is used to accountmore » for convection heat transfer between the gas phase and the particles. The discrete ordinate model is applied to model the radiative heat transfer, and the effect of ash/slag particles on radiative heat transfer is considered. The model was successfully validated by comparison with the industrial plant measurement data, which demonstrated the ability of the model to optimize the design. The results show that a torch shape inlet jet was formed in the RSC, and its length increased with the diameter of the central channel. The recirculation zones appeared around the inlet jet, top, and bottom of the RSC. The overall temperature decreased with the heat-transfer surface area of the fins. The concentration distribution, velocity distribution, residence time distribution, and temperature distribution of particles with different diameters have been discussed. Finally, the slag/ash particles size distribution and temperature profile at the bottom of the RSC have been presented.« less