skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High statistics analysis using anisotropic clover lattices: Single hadron correlation functions

Journal Article · · Physical Review. D, Particles Fields
;  [1]; ;  [2];  [3];  [4];  [5];  [2]
  1. Department of Physics, University of New Hampshire, Durham, New Hampshire 03824-3568 (United States)
  2. Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795 (United States)
  3. N Division, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)
  4. Departament d'Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos, Universitat de Barcelona, E-08028 Barcelona (Spain)
  5. Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States)

We present the results of high-statistics calculations of correlation functions generated with single-baryon interpolating operators on an ensemble of dynamical anisotropic gauge-field configurations generated by the Hadron Spectrum Collaboration using a tadpole-improved clover fermion action and Symanzik-improved gauge action. A total of 292, 500 sets of measurements are made using 1194 gauge configurations of size 20{sup 3}x128 with an anisotropy parameter {xi}=b{sub s}/b{sub t}=3.5, a spatial lattice spacing of b{sub s}=0.1227{+-}0.0008 fm, and pion mass of M{sub {pi}}{approx}390 MeV. Ground state baryon masses are extracted with fully quantified uncertainties that are at or below the {approx}0.2%-level in lattice units. The lowest-lying negative-parity states are also extracted albeit with a somewhat lower level of precision. In the case of the nucleon, this negative-parity state is above the N{pi} threshold and, therefore, the isospin-(1/2) {pi}N s-wave scattering phase-shift can be extracted using Luescher's method. The disconnected contributions to this process are included indirectly in the gauge-field configurations and do not require additional calculations. The signal-to-noise ratio in the various correlation functions is explored and is found to degrade exponentially faster than naive expectations on many time slices. This is due to backward propagating states arising from the antiperiodic boundary conditions imposed on the quark propagators in the time direction. We explore how best to distribute computational resources between configuration generation and propagator measurements in order to optimize the extraction of single baryon observables.

OSTI ID:
21300869
Journal Information:
Physical Review. D, Particles Fields, Vol. 79, Issue 11; Other Information: DOI: 10.1103/PhysRevD.79.114502; (c) 2009 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 0556-2821
Country of Publication:
United States
Language:
English