skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Using the conceptual site model approach to characterize groundwater quality

Abstract

To understand groundwater quality, the first step is to develop a conceptual site model (CSM) that describes the site history, describes the geology and the hydrogeology of the site, identifies potential release areas or sources, and evaluates the fate and transport of site related compounds. After the physical site setting is understood and potential release areas are identified, appropriate and representative groundwater monitoring wells may be used to evaluate groundwater quality at a site and provide a network to assess impacts from potential future releases. To develop the CSM, the first step to understand the different requirements from each of the regulatory stakeholders. Each regulatory agency may have different approaches to site characterization and closure (i.e., different groundwater and soil remediation criteria). For example, the United States Environmental Protection Agency (EPA) and state governments have published guidance documents that proscribe the required steps and information needed to develop a CSM. The Nuclear Regulatory Commission (NRC) has a proscriptive model for the Historical Site Assessment under the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), and contains requirements for developing a conceptual site model in NUREG 1757. Federal and state agencies may also have different closure criteria for potential contaminants ofmore » concern. Understanding these differences before starting a groundwater monitoring program is important because the minimum detectable activity (MDA), lowest limit detection (LLD), and sample quantitation limit (SQL) must be low enough so that data may be evaluated under each of the programs. After a Historical Site Assessment is completed a work plan is developed and executed to not only collect physical data that describes the geology and hydrogeology, but to also characterize the soil, groundwater, sediments, and surface water quality of each potentially impacted areas. Although the primary purpose from operations management may be to address radionuclides in groundwater, the same steps are used to assess other potential contaminates of concern. Based on past experiences, each agency (and in turn the public interest groups) appreciate the initiative of an integrated approach. Use and coordination of the file search and investigative effort to understand potential impacts from all environmental impacts (radiological and chemical) will introduce cost savings and reduce the overall schedule for future projects. Be proactive and combine the initial programs to analyze samples for all appropriate chemical and radiological constituents. Because of the differences between the agencies, it is critical that there are ongoing discussions with all of the regulators. By developing a cohesive CSM, working together, sharing data, and being transparent during each step of the CSM development, there will be more trust, more public support and an easier and more efficient closure process if contaminated media are identified. The benefits of this approach include: - Trust with the regulators and the public. - EPA, state and NRC accepted base line evaluation. - Representative groundwater monitoring network. - Reduced number of points needed for long term monitoring. This paper discusses the process of using the CSM approach for groundwater contamination with examples from a variety of NRC licensed sites. (authors)« less

Authors:
; ;  [1]
  1. MACTEC, Inc., Portland, ME (United States)
Publication Date:
Research Org.:
WM Symposia, 1628 E. Southern Avenue, Suite 9 - 332, Tempe, AZ 85282 (United States)
OSTI Identifier:
21294645
Report Number(s):
INIS-US-09-WM-07086
TRN: US10V0054040835
Resource Type:
Conference
Resource Relation:
Conference: WM'07: 2007 Waste Management Symposium - Global Accomplishments in Environmental and Radioactive Waste Management: Education and Opportunity for the Next Generation of Waste Management Professionals, Tucson, AZ (United States), 25 Feb - 1 Mar 2007; Other Information: Country of input: France
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; CONTAMINATION; ENVIRONMENTAL IMPACTS; GROUND WATER; INFORMATION; MANUALS; MONITORING; RADIOACTIVE WASTES; REMEDIAL ACTION; SEDIMENTS; SITE CHARACTERIZATION; US EPA; WATER QUALITY

Citation Formats

Shephard, E., Glucksberg, N., and Walter, N. Using the conceptual site model approach to characterize groundwater quality. United States: N. p., 2007. Web.
Shephard, E., Glucksberg, N., & Walter, N. Using the conceptual site model approach to characterize groundwater quality. United States.
Shephard, E., Glucksberg, N., and Walter, N. Sun . "Using the conceptual site model approach to characterize groundwater quality". United States. doi:.
@article{osti_21294645,
title = {Using the conceptual site model approach to characterize groundwater quality},
author = {Shephard, E. and Glucksberg, N. and Walter, N.},
abstractNote = {To understand groundwater quality, the first step is to develop a conceptual site model (CSM) that describes the site history, describes the geology and the hydrogeology of the site, identifies potential release areas or sources, and evaluates the fate and transport of site related compounds. After the physical site setting is understood and potential release areas are identified, appropriate and representative groundwater monitoring wells may be used to evaluate groundwater quality at a site and provide a network to assess impacts from potential future releases. To develop the CSM, the first step to understand the different requirements from each of the regulatory stakeholders. Each regulatory agency may have different approaches to site characterization and closure (i.e., different groundwater and soil remediation criteria). For example, the United States Environmental Protection Agency (EPA) and state governments have published guidance documents that proscribe the required steps and information needed to develop a CSM. The Nuclear Regulatory Commission (NRC) has a proscriptive model for the Historical Site Assessment under the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), and contains requirements for developing a conceptual site model in NUREG 1757. Federal and state agencies may also have different closure criteria for potential contaminants of concern. Understanding these differences before starting a groundwater monitoring program is important because the minimum detectable activity (MDA), lowest limit detection (LLD), and sample quantitation limit (SQL) must be low enough so that data may be evaluated under each of the programs. After a Historical Site Assessment is completed a work plan is developed and executed to not only collect physical data that describes the geology and hydrogeology, but to also characterize the soil, groundwater, sediments, and surface water quality of each potentially impacted areas. Although the primary purpose from operations management may be to address radionuclides in groundwater, the same steps are used to assess other potential contaminates of concern. Based on past experiences, each agency (and in turn the public interest groups) appreciate the initiative of an integrated approach. Use and coordination of the file search and investigative effort to understand potential impacts from all environmental impacts (radiological and chemical) will introduce cost savings and reduce the overall schedule for future projects. Be proactive and combine the initial programs to analyze samples for all appropriate chemical and radiological constituents. Because of the differences between the agencies, it is critical that there are ongoing discussions with all of the regulators. By developing a cohesive CSM, working together, sharing data, and being transparent during each step of the CSM development, there will be more trust, more public support and an easier and more efficient closure process if contaminated media are identified. The benefits of this approach include: - Trust with the regulators and the public. - EPA, state and NRC accepted base line evaluation. - Representative groundwater monitoring network. - Reduced number of points needed for long term monitoring. This paper discusses the process of using the CSM approach for groundwater contamination with examples from a variety of NRC licensed sites. (authors)},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Jul 01 00:00:00 EDT 2007},
month = {Sun Jul 01 00:00:00 EDT 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: