skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Risk of Hypogonadism From Scatter Radiation During Pelvic Radiation in Male Patients With Rectal Cancer

Abstract

Purpose: Recent studies have reported fluctuations in sex hormones during pelvic irradiation. The objective of this study was to observe the effects of radiation on hormonal profiles for two treatment modalities: conventional external beam radiotherapy (EBRT) and high-dose-rate brachytherapy (HDRBT) given neoadjuvantly for patients with rectal cancer. Methods and Materials: Routine serum follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone levels were collected from 119 consecutive male patients receiving either EBRT, using 45.0-50.4 Gy in 25-28 fractions with concurrent 5-fluorouracil chemotherapy or HDRBT using 26 Gy in 4 fractions. Results: Thirty patients with initially abnormal profiles were excluded. Profiles included in this study were collected from 51 patients treated with EBRT and 38 patients treated with HDRBT, all of whom had normal hormonal profiles before treatment. Mean follow-up times were 17 months for the entire patient cohort-14 and 20 months, respectively-for the EBRT and HDRBT arms. Dosimetry results revealed a mean cumulative testicular dose of 1.24 Gy received in EBRT patients compared with 0.27 Gy in the HDRBT group. After treatment, FSH and LH were elevated in all patients but were more pronounced in the EBRT group. The testosterone-to-LH ratio was significantly lower (p = 0.0036) in EBRT patientsmore » for tumors in the lower third of the rectum. The 2-year hypogonadism rate observed was 2.6% for HDRBT compared with 17.6% for EBRT (p = 0.09) for tumors in the lower two thirds of the rectum. Conclusion: HDRBT allows better hormonal sparing than EBRT during neoadjuvant treatment of patients with rectal cancer.« less

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [9];  [7];  [8];  [7];  [10]
  1. Department of Physiology, McGill University, Montreal (Canada)
  2. Department of Radiation Oncology, McGill University, Montreal (Canada), E-mail: te.vuong@muhc.mcgill.ca
  3. Faculty of Medicine, Laval University, Quebec (Canada)
  4. Department of Statistics, McGill University, Montreal (Canada)
  5. Department of Endocrinology, McGill University, Montreal (Canada)
  6. Department of Radiation Oncology, McGill University, Montreal (Canada)
  7. Department of Colorectal Surgery, McGill University, Montreal (Canada)
  8. Department of Colorectal Surgery, University of Montreal, Montreal (Canada)
  9. Pierre Boucher Hospital, Department of Surgery, Longueil (Canada)
  10. Department of Medical Physics, McGill University, Montreal (Canada)
Publication Date:
OSTI Identifier:
21276947
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 74; Journal Issue: 5; Other Information: DOI: 10.1016/j.ijrobp.2008.10.011; PII: S0360-3016(08)03593-1; Copyright (c) 2009 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; BRACHYTHERAPY; CHEMOTHERAPY; DOSE RATES; DOSIMETRY; FSH; HAZARDS; IRRADIATION; LUTEINIZING HORMONE; NEOPLASMS; PATIENTS; RADIATION DOSES; RECTUM; TESTES; TESTOSTERONE; URACILS

Citation Formats

Yau, Ivan, Vuong, Te, Garant, Aurelie, Ducruet, Thierry, Doran, Patrick, Faria, Sergio, Liberman, Sender, Richard, Carole, Letellier, Francois, Charlebois, Patrick, Loungnarath, Rasmy, Stein, Barry, and Devic, Slobodan. Risk of Hypogonadism From Scatter Radiation During Pelvic Radiation in Male Patients With Rectal Cancer. United States: N. p., 2009. Web. doi:10.1016/j.ijrobp.2008.10.011.
Yau, Ivan, Vuong, Te, Garant, Aurelie, Ducruet, Thierry, Doran, Patrick, Faria, Sergio, Liberman, Sender, Richard, Carole, Letellier, Francois, Charlebois, Patrick, Loungnarath, Rasmy, Stein, Barry, & Devic, Slobodan. Risk of Hypogonadism From Scatter Radiation During Pelvic Radiation in Male Patients With Rectal Cancer. United States. doi:10.1016/j.ijrobp.2008.10.011.
Yau, Ivan, Vuong, Te, Garant, Aurelie, Ducruet, Thierry, Doran, Patrick, Faria, Sergio, Liberman, Sender, Richard, Carole, Letellier, Francois, Charlebois, Patrick, Loungnarath, Rasmy, Stein, Barry, and Devic, Slobodan. Sat . "Risk of Hypogonadism From Scatter Radiation During Pelvic Radiation in Male Patients With Rectal Cancer". United States. doi:10.1016/j.ijrobp.2008.10.011.
@article{osti_21276947,
title = {Risk of Hypogonadism From Scatter Radiation During Pelvic Radiation in Male Patients With Rectal Cancer},
author = {Yau, Ivan and Vuong, Te and Garant, Aurelie and Ducruet, Thierry and Doran, Patrick and Faria, Sergio and Liberman, Sender and Richard, Carole and Letellier, Francois and Charlebois, Patrick and Loungnarath, Rasmy and Stein, Barry and Devic, Slobodan},
abstractNote = {Purpose: Recent studies have reported fluctuations in sex hormones during pelvic irradiation. The objective of this study was to observe the effects of radiation on hormonal profiles for two treatment modalities: conventional external beam radiotherapy (EBRT) and high-dose-rate brachytherapy (HDRBT) given neoadjuvantly for patients with rectal cancer. Methods and Materials: Routine serum follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone levels were collected from 119 consecutive male patients receiving either EBRT, using 45.0-50.4 Gy in 25-28 fractions with concurrent 5-fluorouracil chemotherapy or HDRBT using 26 Gy in 4 fractions. Results: Thirty patients with initially abnormal profiles were excluded. Profiles included in this study were collected from 51 patients treated with EBRT and 38 patients treated with HDRBT, all of whom had normal hormonal profiles before treatment. Mean follow-up times were 17 months for the entire patient cohort-14 and 20 months, respectively-for the EBRT and HDRBT arms. Dosimetry results revealed a mean cumulative testicular dose of 1.24 Gy received in EBRT patients compared with 0.27 Gy in the HDRBT group. After treatment, FSH and LH were elevated in all patients but were more pronounced in the EBRT group. The testosterone-to-LH ratio was significantly lower (p = 0.0036) in EBRT patients for tumors in the lower third of the rectum. The 2-year hypogonadism rate observed was 2.6% for HDRBT compared with 17.6% for EBRT (p = 0.09) for tumors in the lower two thirds of the rectum. Conclusion: HDRBT allows better hormonal sparing than EBRT during neoadjuvant treatment of patients with rectal cancer.},
doi = {10.1016/j.ijrobp.2008.10.011},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 5,
volume = 74,
place = {United States},
year = {Sat Aug 01 00:00:00 EDT 2009},
month = {Sat Aug 01 00:00:00 EDT 2009}
}
  • Purpose: The aim of this study was to evaluate the impact of variations in pelvic dimensions on the dose delivered to the target volumes and the organs at risk (OARs) in patients with high-risk prostate cancer (PCa) to be treated with whole pelvic radiation therapy (WPRT) in an attempt to define the hostile pelvis in terms of intensity modulated radiation therapy (IMRT). Methods and Materials: In 45 men with high-risk PCa to be treated with WPRT, the target volumes and the OARs were delineated, the dose constraints for the OARs were defined, and treatment plans were generated according to themore » Radiation Therapy Oncology Group 0924 protocol. Six dimensions to reflect the depth, width, and height of the bony pelvis were measured, and 2 indexes were calculated from the planning computed tomographic scans. The minimum dose (D{sub min}), maximum dose (D{sub max}), and mean dose (D{sub mean}) for the target volumes and OARs and the partial volumes of each of these structures receiving a specified dose (V{sub D}) were calculated from the dose-volume histograms (DVHs). The data from the DVHs were correlated with the pelvic dimensions and indexes. Results: According to an overall hostility score (OHS) calculation, 25 patients were grouped as having a hospitable pelvis and 20 as having a hostile pelvis. Regarding the OHS grouping, the DVHs for the bladder, bowel bag, left femoral head, and right femoral head differed in favor of the hospitable pelvis group, and the DVHs for the rectum differed for a range of lower doses in favor of the hospitable pelvis group. Conclusions: Pelvimetry might be used as a guide to define the challenging anatomy or the hostile pelvis in terms of treatment planning for IMRT in patients with high-risk PCa to be treated with WPRT.« less
  • Purpose: The use of pelvic radiation for patients with a high risk of lymph node (LN) metastasis (>15%) remains controversial. We reviewed the data at three institutions treating patients with a combination of external-beam radiation therapy and high-dose-rate brachytherapy to address the prognostic implications of the use of the Roach formula and the benefit of pelvic treatment. Methods and Materials: From 1986 to 2003, 1,491 patients were treated with external-beam radiation therapy and high-dose-rate brachytherapy. The Roach formula [2/3 prostate-specific antigen + (Gleason score -6) x 10] could be calculated for 1,357 patients. Group I consisted of patients having amore » risk of positive LN {<=}15% (n = 761), Group II had a risk >15% and {<=}30% (n = 422), and Group III had a risk of LN disease >30% (n 174). A >15% risk of having positive LN was found in 596 patients and was used to determine the benefit of pelvic radiation. The pelvis was treated at two of the cancer centers (n = 312), whereas at the third center (n = 284) radiation therapy was delivered to the prostate and seminal vesicles alone. Average biologic effective dose was {>=}100 Gy ({alpha}{beta} = 1.2). Biochemical failure was as per the American Society for Therapeutic Radiology and Oncology definition. Statistics included the log-rank test as well as Cox univariate and multivariate analysis. Results: For all 596 patients with a positive LN risk >15%, median follow-up was 4.3 years, with a mean of 4.8 years. For all cases, median follow-up was 4 years and mean follow-up was 4.4 years. Five-year results for the three groups based on their risk of positive LN were significantly different in terms of biochemical failure (p < 0.001), clinical control (p < 0.001), disease-free survival excluding biochemical failure (p < 0.001), cause-specific survival (p < 0.001), and overall survival (p < 0.001). For all patients with a risk of positive LN >15% (n 596), Group II (>15-30% risk), or Group III (>30% risk), no benefit was seen in the 5-year rates of clinical failure, cause-specific survival, or overall survival with pelvic radiation. In the Cox multivariate analysis for cause-specific survival, Gleason score (p = 0.009, hazard ratio [HR] 3.1), T stage (p = 0.03, HR 1.8), and year of treatment (p = 0.05, HR 1.1) were significant. A log-rank test for cause-specific survival for all patients (n = 577) by the use of pelvic radiation was not significant (p = 0.99) accounting for high-dose-rate brachytherapy dose, neoadjuvant hormones, Gleason score, prostate-specific antigen, T stage, and year of treatment as covariates. Conclusions: The use of the Roach formula to stratify patients for clinical and biochemical outcomes is excellent. Pelvic radiation added to high prostate radiation doses did not show a clinical benefit for patients at a high risk of pelvic LN disease (>15%) selected using the Roach formula.« less
  • Purpose: To perform a prospective phase II study to investigate the efficacy and safety of preoperative pelvic radiation therapy and concomitant small-field boost irradiation with 5-fluorouracil and leucovorin for 5 weeks in locally advanced rectal cancer patients. Methods and Materials: Sixty-nine patients with locally advanced, nonmetastatic, mid-to-lower rectal cancer were prospectively enrolled. They had received preoperative chemoradiation therapy and total mesorectal excision. Pelvic radiation therapy of 43.2 Gy in 24 fractions plus concomitant boost radiation therapy of 7.2 Gy in 12 fractions was delivered to the pelvis and tumor bed for 5 weeks. Two cycles of 5-fluorouracil and leucovorin weremore » administered for 3 days in the first and fifth week of radiation therapy. The pathologic response, survival outcome, and treatment toxicity were evaluated for the study endpoints. Results: Of 69 patients, 8 (11.6%) had a pathologically complete response. Downstaging rates were 40.5% for T classification and 68.1% for N classification. At the median follow-up of 69 months, 36 patients have been followed up for more than 5 years. The 5-year disease-free survival (DFS) and overall survival rates were 66.0% and 75.3%, respectively. Higher pathologic T (P = .045) and N (P = .032) classification were significant adverse prognostic factors for DFS, and high-grade histology was an adverse prognostic factor for both DFS (P = .025) and overall survival (P = .031) on the multivariate analysis. Fifteen patients (21.7%) experienced grade 3 or 4 acute toxicity, and 7 patients (10.1%) had long-term toxicity. Conclusion: Preoperative pelvic radiation therapy with concomitant boost irradiation with 5-fluorouracil and leucovorin for 5 weeks showed acceptable acute and long-term toxicities. However, the benefit of concomitant small-field boost irradiation for 5 weeks in rectal cancer patients was not demonstrated beyond conventional irradiation for 6 weeks in terms of tumor response and survival.« less
  • Purpose/Objectives: The addition of whole pelvic (WP) compared with prostate-only (PO) radiation therapy (RT) for clinically node-negative prostate cancer remains controversial. The purpose of our study was to evaluate the survival benefit of adding WPRT versus PO-RT for high-risk, node-negative prostate cancer, using the National Cancer Data Base (NCDB). Methods and Materials: Patients with high-risk prostate cancer treated from 2004 to 2006, with available data for RT volume, coded as prostate and pelvis (WPRT) or prostate alone (PO-RT) were included. Multivariate analysis (MVA) and propensity-score matched analysis (PSM) were performed. Recursive partitioning analysis (RPA) based on overall survival (OS) usingmore » Gleason score (GS), T stage, and pretreatment prostate-specific antigen (PSA) was also conducted. Results: A total of 14,817 patients were included: 7606 (51.3%) received WPRT, and 7211 (48.7%) received PO-RT. The median follow-up time was 81 months (range, 2-122 months). Under MVA, the addition of WPRT for high-risk patients had no OS benefit compared with PO-RT (HR 1.05; P=.100). On subset analysis, patients receiving dose-escalated RT also did not benefit from WPRT (HR 1.01; P=.908). PSM confirmed no survival benefit with the addition of WPRT for high-risk patients (HR 1.05; P=.141). In addition, RPA was unable to demonstrate a survival benefit of WPRT for any subset. Other prognostic factors for inferior OS under MVA included older age (HR 1.25; P<.001), increasing comorbidity scores (HR 1.46; P<.001), higher T stage (HR 1.17; P<.001), PSA (HR 1.81; P<.001), and GS (HR 1.29; P<.001), and decreasing median county household income (HR 1.15; P=.011). Factors improving OS included the addition of androgen deprivation therapy (HR 0.92; P=.033), combination external beam RT plus brachytherapy boost (HR 0.71; P<.001), and treatment at an academic/research institution (HR 0.84; P=.002). Conclusion: In the largest reported analysis of WPRT for patients with high-risk prostate cancer treated in the dose-escalated era, the addition of WPRT demonstrated no survival advantage compared with PO-RT.« less
  • Given the low α/β ratio of prostate cancer, prostate hypofractionation has been tested through numerous clinical studies. There is a growing body of literature suggesting that with high conformal radiation therapy and even with more sophisticated radiation techniques, such as high-dose-rate brachytherapy or image-guided intensity modulated radiation therapy, morbidity associated with shortening overall treatment time with higher doses per fraction remains low when compared with protracted conventional radiation therapy to the prostate only. In high-risk prostate cancer patients, there is accumulating evidence that either dose escalation to the prostate or hypofractionation may improve outcome. Nevertheless, selected patients who have amore » high risk of lymph node involvement may benefit from whole-pelvic radiation therapy (WPRT). Although combining WPRT with hypofractionated prostate radiation therapy is feasible, it remains investigational. By combining modern advances in radiation oncology (high-dose-rate prostate brachytherapy, intensity modulated radiation therapy with an improved image guidance for soft-tissue sparing), it is hypothesized that WPRT could take advantage of recent results from hypofractionation trials. Moreover, the results from hypofractionation trials raise questions as to whether hypofractionation to pelvic lymph nodes with a high risk of occult involvement might improve the outcomes in WPRT. Although investigational, this review discusses the challenging idea of WPRT in the context of hypofractionation for patients with high-risk prostate cancer.« less