skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Skin Cancer of the Head and Neck With Perineural Invasion: Defining the Clinical Target Volumes Based on the Pattern of Failure

Abstract

Purpose: To analyze patterns of failure in patients with head-and-neck cutaneous squamous cell carcinoma (HNCSCC) and clinical/radiologic evidence of perineural invasion (CPNI), in order to define neural clinical target volume (CTV) for treatment planning. Methods and Materials: Patients treated with three-dimensional (3D) conformal or intensity-modulated radiotherapy (IMRT) for HNCSCC with CPNI were included in the study. A retrospective review of the clinical charts, radiotherapy (RT) plans and radiologic studies has been conducted. Results: Eleven consecutive patients with HNCSCCs with CPNI were treated from 2000 through 2007. Most patients underwent multiple surgical procedures and RT courses. The most prevalent failure pattern was along cranial nerves (CNs), and multiple CNs were ultimately involved in the majority of cases. In all cases the involved CNs at recurrence were the main nerves innervating the primary tumor sites, as well as their major communicating nerves. We have found several distinct patterns of disease spread along specific CNs depending on the skin regions harboring the primary tumors, including multiple branches of CN V and VII. These patterns and the pertinent anatomy are detailed in the this article. Conclusions: Predictable disease spread patterns along cranial nerves supplying the primary tumor sites were found in this study. Awarenessmore » of these patterns, as well as knowledge of the relevant cranial nerve anatomy, should be the basis for CTV definition and delineation for RT treatment planning.« less

Authors:
 [1];  [2];  [1]; ; ; ; ;  [3];  [4]
  1. Department of Radiation Oncology, University of Michigan, Ann Arbor MI (United States)
  2. Department of Radiology, University of Michigan, Ann Arbor MI (United States)
  3. Department of Head and Neck Surgery, University of Michigan, Ann Arbor MI (United States)
  4. Department of Radiation Oncology, University of Michigan, Ann Arbor MI (United States), E-mail: eisbruch@umich.edu
Publication Date:
OSTI Identifier:
21276768
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 74; Journal Issue: 1; Other Information: DOI: 10.1016/j.ijrobp.2008.06.1943; PII: S0360-3016(08)03049-6; Copyright (c) 2009 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; CARCINOMAS; FAILURES; HEAD; NECK; NERVES; PATIENTS; PLANNING; RADIOTHERAPY; SKIN; SURGERY

Citation Formats

Gluck, Iris, Ibrahim, Mohannad, Popovtzer, Aron, Teknos, Theodoros N., Chepeha, Douglas B., Prince, Mark E., Moyer, Jeffrey S., Bradford, Carol R., and Eisbruch, Avraham. Skin Cancer of the Head and Neck With Perineural Invasion: Defining the Clinical Target Volumes Based on the Pattern of Failure. United States: N. p., 2009. Web. doi:10.1016/j.ijrobp.2008.06.1943.
Gluck, Iris, Ibrahim, Mohannad, Popovtzer, Aron, Teknos, Theodoros N., Chepeha, Douglas B., Prince, Mark E., Moyer, Jeffrey S., Bradford, Carol R., & Eisbruch, Avraham. Skin Cancer of the Head and Neck With Perineural Invasion: Defining the Clinical Target Volumes Based on the Pattern of Failure. United States. doi:10.1016/j.ijrobp.2008.06.1943.
Gluck, Iris, Ibrahim, Mohannad, Popovtzer, Aron, Teknos, Theodoros N., Chepeha, Douglas B., Prince, Mark E., Moyer, Jeffrey S., Bradford, Carol R., and Eisbruch, Avraham. Fri . "Skin Cancer of the Head and Neck With Perineural Invasion: Defining the Clinical Target Volumes Based on the Pattern of Failure". United States. doi:10.1016/j.ijrobp.2008.06.1943.
@article{osti_21276768,
title = {Skin Cancer of the Head and Neck With Perineural Invasion: Defining the Clinical Target Volumes Based on the Pattern of Failure},
author = {Gluck, Iris and Ibrahim, Mohannad and Popovtzer, Aron and Teknos, Theodoros N. and Chepeha, Douglas B. and Prince, Mark E. and Moyer, Jeffrey S. and Bradford, Carol R. and Eisbruch, Avraham},
abstractNote = {Purpose: To analyze patterns of failure in patients with head-and-neck cutaneous squamous cell carcinoma (HNCSCC) and clinical/radiologic evidence of perineural invasion (CPNI), in order to define neural clinical target volume (CTV) for treatment planning. Methods and Materials: Patients treated with three-dimensional (3D) conformal or intensity-modulated radiotherapy (IMRT) for HNCSCC with CPNI were included in the study. A retrospective review of the clinical charts, radiotherapy (RT) plans and radiologic studies has been conducted. Results: Eleven consecutive patients with HNCSCCs with CPNI were treated from 2000 through 2007. Most patients underwent multiple surgical procedures and RT courses. The most prevalent failure pattern was along cranial nerves (CNs), and multiple CNs were ultimately involved in the majority of cases. In all cases the involved CNs at recurrence were the main nerves innervating the primary tumor sites, as well as their major communicating nerves. We have found several distinct patterns of disease spread along specific CNs depending on the skin regions harboring the primary tumors, including multiple branches of CN V and VII. These patterns and the pertinent anatomy are detailed in the this article. Conclusions: Predictable disease spread patterns along cranial nerves supplying the primary tumor sites were found in this study. Awareness of these patterns, as well as knowledge of the relevant cranial nerve anatomy, should be the basis for CTV definition and delineation for RT treatment planning.},
doi = {10.1016/j.ijrobp.2008.06.1943},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 1,
volume = 74,
place = {United States},
year = {Fri May 01 00:00:00 EDT 2009},
month = {Fri May 01 00:00:00 EDT 2009}
}
  • Purpose: Reirradiation (re-RT) of recurrent head and neck cancer (HNC) may achieve long-term disease control in some patients, at the expense of high rates of late sequelae. Limiting the re-RT targets to the recurrent gross tumor volume (rGTV) would reduce the volumes of reirradiated tissues; however, its effect on tumor recurrence pattern is unknown. Methods and Materials: This is a retrospective review of 66 patients who underwent curative-intent re-RT for nonresectable recurrent or second primary mucosal squamous cell HNC. Treatment was delivered with three-dimensional conformal (3D) RT or intensity-modulated RT (IMRT). The targets in all patients consisted of the rGTVsmore » with tight (0.5-cm) margins, with no intent to treat prophylactically lymph nodes or subclinical disease in the vicinity of the rGTVs. The sites of locoregional failures (LRFs) were determined using imaging at the time of failure and were compared with the rGTVs. Results: Median re-RT dose was 68 Gy. Forty-seven patients (71%) received concomitant chemotherapy, and 31 (47%) received hyperfractionated, accelerated RT. At a median follow-up of 42 months, 16 (23%) were alive and disease-free. Fifty patients (77%) had a third recurrence or persistent disease, including 47 LRFs. All LRFs occurred within the rGTVs except for two (4%) (95% confidence interval, 0-11%). Nineteen patients (29%) had Grade {>=} 3 late complications, mostly dysphagia (12 patients). Conclusions: Almost all LRFs occurred within the reirradiated rGTVs despite avoiding prophylactic RT of tissue at risk of subclinical disease. These results support confining the re-RT targets to the rGTVs to reduce reirradiated tissue volumes.« less
  • Purpose: To validate and clinically evaluate autocontouring using atlas-based autosegmentation (ABAS) of computed tomography images. Methods and Materials: The data from 10 head-and-neck patients were selected as input for ABAS, and neck levels I-V and 20 organs at risk were manually contoured according to published guidelines. The total contouring times were recorded. Two different ABAS strategies, multiple and single subject, were evaluated, and the similarity of the autocontours with the atlas contours was assessed using Dice coefficients and the mean distances, using the leave-one-out method. For 12 clinically treated patients, 5 experienced observers edited the autosegmented contours. The editing timesmore » were recorded. The Dice coefficients and mean distances were calculated among the clinically used contours, autocontours, and edited autocontours. Finally, an expert panel scored all autocontours and the edited autocontours regarding their adequacy relative to the published atlas. Results: The time to autosegment all the structures using ABAS was 7 min/patient. No significant differences were observed in the autosegmentation accuracy for stage N0 and N+ patients. The multisubject atlas performed best, with a Dice coefficient and mean distance of 0.74 and 2 mm, 0.67 and 3 mm, 0.71 and 2 mm, 0.50 and 2 mm, and 0.78 and 2 mm for the salivary glands, neck levels, chewing muscles, swallowing muscles, and spinal cord-brainstem, respectively. The mean Dice coefficient and mean distance of the autocontours vs. the clinical contours was 0.8 and 2.4 mm for the neck levels and salivary glands, respectively. For the autocontours vs. the edited autocontours, the mean Dice coefficient and mean distance was 0.9 and 1.6 mm, respectively. The expert panel scored 100% of the autocontours as a 'minor deviation, editable' or better. The expert panel scored 88% of the edited contours as good compared with 83% of the clinical contours. The total editing time was 66 min. Conclusion: Multiple-subject ABAS of computed tomography images proved to be a useful novel tool in the rapid delineation of target and normal tissues. Although editing of the autocontours is inevitable, a substantial time reduction was achieved using editing, instead of manual contouring (180 vs. 66 min).« less
  • Purpose: To determine the optimal clinical target volume margins around the gross nodal tumor volume in head-and-neck cancer by assessing microscopic tumor extension beyond cervical lymph node capsules. Methods and Materials: Histologic sections of 96 dissected cervical lymph nodes with extracapsular extension (ECE) from 48 patients with head-and-neck squamous cell carcinoma were examined. The maximum linear distance from the external capsule border to the farthest extent of the tumor or tumoral reaction was measured. The trends of ECE as a function of the distance from the capsule and lymph node size were analyzed. Results: The median diameter of all lymphmore » nodes was 11.0 mm (range: 3.0-30.0 mm). The mean and median ECE extent was 2.2 mm and 1.6 mm, respectively (range: 0.4-9.0 mm). The ECE was <5 mm from the capsule in 96% of the nodes. As the distance from the capsule increased, the probability of tumor extension declined. No significant difference between the extent of ECE and lymph node size was observed. Conclusion: For N1 nodes that are at high risk for ECE but not grossly infiltrating musculature, 1 cm clinical target volume margins around the nodal gross tumor volume are recommended to cover microscopic nodal extension in head-and-neck cancer.« less
  • Purpose: To determine if the presence of perineural invasion (PNI) predicts biochemical recurrence in patients who underwent low-dose-rate brachytherapy for the treatment of localized prostate cancer. Methods and Materials: A retrospective case control matching study was performed. The records of 651 patients treated with brachytherapy between 1996 and 2003 were reviewed. Sixty-three of these patients developed biochemical failure. These sixty-three patients were then matched in a one-to-one ratio to patients without biochemical failure, controlling for biopsy Gleason score, clinical stage, initial prostate-specific antigen, age, and the use of androgen deprivation. The pathology of the entire cohort was then reviewed formore » evidence of perineural invasion on initial prostate biopsy specimens. The biochemical relapse free survival rates for these two groups were compared. Results: Cases and controls were well matched, and there were no significant differences between the two groups in age, Gleason grade, clinical stage, initial prostate-specific antigen, and the use of androgen deprivation. PNI was found in 19 (17%) patients. There was no significant difference in the rates of PNI between cases and controls, 19.6% and 14.3% respectively (p 0.45). PNI did not correlate with biochemical relapse free survival (p 0.40). Conclusion: Perineural invasion is not a significant predictor of biochemical recurrence in patients undergoing brachytherapy for prostate cancer.« less
  • Purpose: To develop and test population-based machine learning algorithms for delineating high-dose clinical target volumes (CTVs) in H&N tumors. Automating and standardizing the contouring of CTVs can reduce both physician contouring time and inter-physician variability, which is one of the largest sources of uncertainty in H&N radiotherapy. Methods: Twenty-five node-negative patients treated with definitive radiotherapy were selected (6 right base of tongue, 11 left and 9 right tonsil). All patients had GTV and CTVs manually contoured by an experienced radiation oncologist prior to treatment. This contouring process, which is driven by anatomical, pathological, and patient specific information, typically results inmore » non-uniform margin expansions about the GTV. Therefore, we tested two methods to delineate high-dose CTV given a manually-contoured GTV: (1) regression-support vector machines(SVM) and (2) classification-SVM. These models were trained and tested on each patient group using leave-one-out cross-validation. The volume difference(VD) and Dice similarity coefficient(DSC) between the manual and auto-contoured CTV were calculated to evaluate the results. Distances from GTV-to-CTV were computed about each patient’s GTV and these distances, in addition to distances from GTV to surrounding anatomy in the expansion direction, were utilized in the regression-SVM method. The classification-SVM method used categorical voxel-information (GTV, selected anatomical structures, else) from a 3×3×3cm3 ROI centered about the voxel to classify voxels as CTV. Results: Volumes for the auto-contoured CTVs ranged from 17.1 to 149.1cc and 17.4 to 151.9cc; the average(range) VD between manual and auto-contoured CTV were 0.93 (0.48–1.59) and 1.16(0.48–1.97); while average(range) DSC values were 0.75(0.59–0.88) and 0.74(0.59–0.81) for the regression-SVM and classification-SVM methods, respectively. Conclusion: We developed two novel machine learning methods to delineate high-dose CTV for H&N patients. Both methods showed promising results that hint to a solution to the standardization of the contouring process of clinical target volumes. Varian Medical Systems grant.« less