skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exposure to monomethylarsonous acid (MMA{sup III}) leads to altered selenoprotein synthesis in a primary human lung cell model

Journal Article · · Toxicology and Applied Pharmacology
;  [1];  [2]
  1. Department of Molecular Biology and Microbiology, Burnett School of Biomedical Science, University of Central Florida, Orlando, Florida 32816-2364 (United States)
  2. Department of Nutrition and Food Sciences, Utah State University, Logan, Utah 84322 (United States)

Monomethylarsonous acid (MMA{sup III}), a trivalent metabolite of arsenic, is highly cytotoxic and recent cell culture studies suggest that it might act as a carcinogen. The general consensus of studies indicates that the cytotoxicity of MMA{sup III} is a result of increased levels of reactive oxygen species (ROS). A longstanding relationship between arsenic and selenium metabolism has led to the use of selenium as a supplement in arsenic exposed populations, however the impact of organic arsenicals (methylated metabolites) on selenium metabolism is still poorly understood. In this study we determined the impact of exposure to MMA{sup III} on the regulation of expression of TrxR1 and its activity using a primary lung fibroblast line, WI-38. The promoter region of the gene encoding the selenoprotein thioredoxin reductase 1 (TrxR1) contains an antioxidant responsive element (ARE) that has been shown to be activated in the presence of electrophilic compounds. Results from radiolabeled selenoproteins indicate that exposure to low concentrations of MMA{sup III} resulted in increased synthesis of TrxR1 in WI-38 cells, and lower incorporation of selenium into other selenoproteins. MMA{sup III} treatment led to increased mRNA encoding TrxR1 in WI-38 cells, while lower levels of mRNA coding for cellular glutathione peroxidase (cGpx) were detected in exposed cells. Luciferase activity of TrxR1 promoter fusions increased with addition of MMA{sup III}, as did expression of a rat quinone reductase (QR) promoter fusion construct. However, MMA{sup III} induction of the TRX1 promoter fusion was abrogated when the ARE was mutated, suggesting that this regulation is mediated via the ARE. These results indicate that MMA{sup III} alters the expression of selenoproteins based on a selective induction of TrxR1, and this response to exposure to organic arsenicals that requires the ARE element.

OSTI ID:
21272635
Journal Information:
Toxicology and Applied Pharmacology, Vol. 239, Issue 2; Conference: Valencia Spain arsenic meeting: From nature to humans, Valencia (Spain), 21-23 May 2008; Other Information: DOI: 10.1016/j.taap.2008.11.011; PII: S0041-008X(08)00485-7; Copyright (c) 2008 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0041-008X
Country of Publication:
United States
Language:
English