skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: O-GlcNAc inhibits interaction between Sp1 and Elf-1 transcription factors

Abstract

The novel protein modification, O-linked N-acetylglucosamine (O-GlcNAc), plays an important role in various aspects of cell regulation. Although most of nuclear transcription regulatory factors are modified by O-GlcNAc, O-GlcNAc effects on transcription remain largely undefined yet. In this study, we show that O-GlcNAc inhibits a physical interaction between Sp1 and Elf-1 transcription factors, and negatively regulates transcription of placenta and embryonic expression oncofetal protein gene (Pem). These findings suggest that O-GlcNAc inhibits Sp1-mediated gene transcription possibly by interrupting Sp1 interaction with its cooperative factor.

Authors:
 [1];  [2]
  1. School of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of)
  2. School of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of), E-mail: hichang@korea.ac.kr
Publication Date:
OSTI Identifier:
21255928
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 380; Journal Issue: 3; Other Information: DOI: 10.1016/j.bbrc.2009.01.121; PII: S0006-291X(09)00168-5; Copyright (c) 2009 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; GENES; INTERACTIONS; PLACENTA; TRANSCRIPTION; TRANSCRIPTION FACTORS

Citation Formats

Lim, Kihong, and Chang, Hyo-Ihl. O-GlcNAc inhibits interaction between Sp1 and Elf-1 transcription factors. United States: N. p., 2009. Web. doi:10.1016/j.bbrc.2009.01.121.
Lim, Kihong, & Chang, Hyo-Ihl. O-GlcNAc inhibits interaction between Sp1 and Elf-1 transcription factors. United States. doi:10.1016/j.bbrc.2009.01.121.
Lim, Kihong, and Chang, Hyo-Ihl. 2009. "O-GlcNAc inhibits interaction between Sp1 and Elf-1 transcription factors". United States. doi:10.1016/j.bbrc.2009.01.121.
@article{osti_21255928,
title = {O-GlcNAc inhibits interaction between Sp1 and Elf-1 transcription factors},
author = {Lim, Kihong and Chang, Hyo-Ihl},
abstractNote = {The novel protein modification, O-linked N-acetylglucosamine (O-GlcNAc), plays an important role in various aspects of cell regulation. Although most of nuclear transcription regulatory factors are modified by O-GlcNAc, O-GlcNAc effects on transcription remain largely undefined yet. In this study, we show that O-GlcNAc inhibits a physical interaction between Sp1 and Elf-1 transcription factors, and negatively regulates transcription of placenta and embryonic expression oncofetal protein gene (Pem). These findings suggest that O-GlcNAc inhibits Sp1-mediated gene transcription possibly by interrupting Sp1 interaction with its cooperative factor.},
doi = {10.1016/j.bbrc.2009.01.121},
journal = {Biochemical and Biophysical Research Communications},
number = 3,
volume = 380,
place = {United States},
year = 2009,
month = 3
}
  • In the canonical Wnt signaling pathway, {beta}-catenin activates target genes through its interactions with Tcf/Lef-family transcription factors and additional transcriptional coactivators. The crystal structure of ICAT, an inhibitor of {beta}-catenin-mediated transcription, bound to the armadillo repeat domain of {beta}-catenin, has been determined. ICAT contains an N-terminal helilical domain that binds to repeats 11 and 12 of {beta}-catenin, and an extended C-terminal region that binds to repeats 5-10 in a manner similar that of Tcfs and other {beta}-catenin ligands. Full-length ICAT dissociates complexes of {beta}-catenin, Lef-1, and the transcriptional coactivator p300, whereas the helical domain alone selectively blocks binding to p300.more » The C-terminal armadillo repeats of {beta}-catenin may be an attractive target for compounds designed to disrupt aberrant {beta}-catenin-mediated transcription associated with various cancers.« less
  • Epstein-Barr virus (EBV) is a lymphotrophic herpesvirus infecting most of the world's population. It is associated with a number of human lymphoid and epithelial tumors and lymphoproliferative diseases in immunocompromised patients. A subset of latent EBV antigens is required for immortalization of primary B-lymphocytes. The metastatic suppressor Nm23-H1 which is downregulated in human invasive breast carcinoma reduces the migration and metastatic activity of breast carcinoma cells when expressed from a heterologous promoter. Interestingly, the EBV nuclear antigen 3C (EBNA3C) reverses these activities of Nm23-H1. The alpha V integrins recognize a variety of ligands for signaling and are involved in cellmore » migration and proliferation and also serve as major receptors for extracellular-matrix-mediated cell adhesion and migration. The goal of this study was to determine if Nm23-H1 and EBNA3C can modulate alpha V integrin expression and downstream activities. The results of our studies indicate that Nm23-H1 downregulates alpha V intregrin expression in a dose responsive manner. In contrast, EBNA3C can upregulate alpha V integrin expression. Furthermore, the study showed that the association of the Sp1 and GATA transcription factors with Nm23-H1 is required for modulation of the alpha V integrin activity. Thus, these results suggest a direct correlation between the alpha V integrin expression and the interaction of Nm23-H1 with EBNA3C.« less
  • Repeat sequence motifs as well as unique sequences between nucleotides {minus}150 and {minus}22 of the human cytomegalovirus immediate-early 1 gene interact in vitro with nuclear proteins. The authors show that a transcriptional element between nucleotides {minus}91 and {minus}65 stimulated promoter activity in vivo and in vitro by binding specific cellular transcription factors. Finally, a common sequence motif, (T)TGG/AC, present in 15 of the determined binding sites suggests a particular class of nuclear factors associated with the immediate-early 1 gene.
  • Primary effusion lymphoma (PEL) is a rare and aggressive non-Hodgkin's lymphoma. Human telomerase reverse transcriptase (hTERT), a key component responsible for the regulation of telomerase activity, plays important roles in cellular immortalization and cancer development. Triptolide purified from Tripterygium extracts displays a broad-spectrum bioactivity profile, including immunosuppressive, anti-inflammatory, and anti-tumor. In this study, it is investigated whether triptolide reduces hTERT expression and suppresses its activity in PEL cells. The mRNA and protein levels of hTERT were examined by real time-PCR and Western blotting, respectively. The activity of hTERT promoter was determined by Dual luciferase reporter assay. Our results demonstrated thatmore » triptolide decreased expression of hTERT at both mRNA and protein levels. Further gene sequence analysis indicated that the activity of hTERT promoter was suppressed by triptolide. Triptolide also reduced the half-time of hTERT. Additionally, triptolide inhibited the expression of transcription factor specificity protein 1(Sp1) in PEL cells. Furthermore, knock-down of Sp1 by using specific shRNAs resulted in down-regulation of hTERT transcription and protein expression levels. Inhibition of Sp1 by specific shRNAs enhanced triptolide-induced cell growth inhibition and apoptosis. Collectively, our results demonstrate that the inhibitory effect of triptolide on hTERT transcription is possibly mediated by inhibition of transcription factor Sp1 in PEL cells. - Highlights: • Triptolide reduces expression of hTERT by decreasing its transcription level. • Triptolide reduces promoter activity and stability of hTERT. • Triptolide down-regulates expression of Sp1. • Special Sp1 shRNAs inhibit transcription and protein expression of hTERT. • Triptolide and Sp1 shRNA2 induce cell proliferation inhibition and apoptosis.« less
  • Highlights: •β1,4GT1 interacts with EGFR both in vitro and in vivo. •β1,4GT1 co-localizes with EGFR on the cell surface. •β1,4GT1 inhibits {sup 125}I-EGF binding to EGFR. •β1,4GT1 inhibits EGF induced EGFR dimerization and phosphorylation. -- Abstract: Our previous studies showed that cell surface β1,4-galactosyltransferase 1 (β1,4GT1) negatively regulated cell survival through inhibition and modulation of the epidermal growth factor receptor (EGFR) signaling pathway in human hepatocellular carcinoma (HCC) SMMC-7721 cells. However, the underlying mechanism remains unclear. Here we demonstrated that β1,4-galactosyltransferase 1 (β1,4GT1) interacted with EGFR in vitro by GST pull-down analysis. Furthermore, we demonstrated that β1,4GT1 bound to EGFRmore » in vivo by co-immunoprecipitation and determined the co-localization of β1,4GT1 and EGFR on the cell surface via confocal laser scanning microscopy analysis. Finally, using {sup 125}I-EGF binding experiments and Western blot analysis, we found that overexpression of β1,4GT1 inhibited {sup 125}I-EGF binding to EGFR, and consequently reduced the levels of EGFR dimerization and phosphorylation. In contrast, RNAi-mediated knockdown of β1,4GT1 increased the levels of EGFR dimerization and phosphorylation. These data suggest that cell surface β1,4GT1 interacts with EGFR and inhibits EGFR activation.« less