skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Scientific Highlights from Observations of Active Galactic Nuclei with the MAGIC Telescope

Abstract

Since 2004, the MAGIC {gamma}-ray telescope has newly discovered 6 TeV blazars. The total set of 13 MAGIC-detected active galactic nuclei includes well-studied objects at other wavelengths like Markarian 501 and the giant radio galaxy M 87, but also the distant the flat-spectrum radio quasar 3C 279, and the newly discovered TeV {gamma}-ray emitter S5 0716+71. In addition, also long-term and multi-wavelength studies on well-known TeV blazars and systematic searches for new TeV blazars have been carried out. Here we report selected highlights from recent MAGIC observations of extragalactic TeV {gamma}-ray sources, emphasizing the new physics insights MAGIC was able to contribute.

Authors:
 [1]
  1. Max-Planck-Institut fuer Physik, D-80805 Muenchen (Germany)
Publication Date:
OSTI Identifier:
21255159
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1085; Journal Issue: 1; Conference: 4. international meeting on high energy gamma-ray astronomy, Heidelberg (Germany), 7-11 Jul 2008; Other Information: DOI: 10.1063/1.3076691; (c) 2009 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; 99 GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; COSMIC GAMMA SOURCES; GALAXY NUCLEI; GAMMA RADIATION; QUASARS; RADIO GALAXIES; TELESCOPES; TEV RANGE 01-10

Citation Formats

Wagner, Robert. Scientific Highlights from Observations of Active Galactic Nuclei with the MAGIC Telescope. United States: N. p., 2008. Web. doi:10.1063/1.3076691.
Wagner, Robert. Scientific Highlights from Observations of Active Galactic Nuclei with the MAGIC Telescope. United States. doi:10.1063/1.3076691.
Wagner, Robert. 2008. "Scientific Highlights from Observations of Active Galactic Nuclei with the MAGIC Telescope". United States. doi:10.1063/1.3076691.
@article{osti_21255159,
title = {Scientific Highlights from Observations of Active Galactic Nuclei with the MAGIC Telescope},
author = {Wagner, Robert},
abstractNote = {Since 2004, the MAGIC {gamma}-ray telescope has newly discovered 6 TeV blazars. The total set of 13 MAGIC-detected active galactic nuclei includes well-studied objects at other wavelengths like Markarian 501 and the giant radio galaxy M 87, but also the distant the flat-spectrum radio quasar 3C 279, and the newly discovered TeV {gamma}-ray emitter S5 0716+71. In addition, also long-term and multi-wavelength studies on well-known TeV blazars and systematic searches for new TeV blazars have been carried out. Here we report selected highlights from recent MAGIC observations of extragalactic TeV {gamma}-ray sources, emphasizing the new physics insights MAGIC was able to contribute.},
doi = {10.1063/1.3076691},
journal = {AIP Conference Proceedings},
number = 1,
volume = 1085,
place = {United States},
year = 2008,
month =
}
  • Dual active galactic nuclei (AGNs) and offset AGNs are kpc-scale separation supermassive black holes pairs created during galaxy mergers, where both or one of the black holes are AGNs, respectively. These dual and offset AGNs are valuable probes of the link between mergers and AGNs but are challenging to identify. Here we present Chandra/ACIS observations of 12 optically selected dual AGN candidates atmore » $$z\lt 0.34$$, where we use the X-rays to identify AGNs. We also present Hubble Space Telescope/Wide Field Camera 3 observations of 10 of these candidates, which reveal any stellar bulges accompanying the AGNs. We discover a dual AGN system with separation $${\rm \Delta }x=2.2$$ kpc, where the two stellar bulges have coincident [O iii] λ5007 and X-ray sources. This system is an extremely minor merger (460:1) that may include a dwarf galaxy hosting an intermediate mass black hole. We also find six single AGNs, and five systems that are either dual or offset AGNs with separations $${\rm \Delta }x\lt 10$$ kpc. Four of the six dual AGNs and dual/offset AGNs are in ongoing major mergers, and these AGNs are 10 times more luminous, on average, than the single AGNs in our sample. This hints that major mergers may preferentially trigger higher luminosity AGNs. Further, we find that confirmed dual AGNs have hard X-ray luminosities that are half of those of single AGNs at fixed [O III] λ5007 luminosity, on average. Lastly, this could be explained by high densities of gas funneled to galaxy centers during mergers, and emphasizes the need for deeper X-ray observations of dual AGN candidates.« less
  • Analysis is presented for 15 months of data taken with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope for 11 non-blazar active galactic nuclei (AGNs), including seven FRI radio galaxies and four FRII radio sources consisting of two FRII radio galaxies and two steep spectrum radio quasars. The broad line FRI radio galaxy 3C 120 is reported here as a γ-ray source for the first time. The analysis is based on directional associations of LAT sources with radio sources in the 3CR, 3CRR, and MS4 (collectively referred to as 3C-MS) catalogs. Seven of the eleven LAT sourcesmore » associated with 3C-MS radio sources have spectral indices larger than 2.3 and, except for the FRI radio galaxy NGC 1275 that shows possible spectral curvature, are well described by a power law. No evidence for time variability is found for any sources other than NGC 1275. The γ-ray luminosities of FRI radio galaxies are significantly smaller than those of the BL Lac objects detected by the LAT, whereas the γ-ray luminosities of the FRII sources are quite similar to those of FSRQs, which could reflect different beaming factors for the γ-ray emission. A core dominance (CD) study of the 3CRR sample indicates that sources closer to the jet axis are preferentially detected with the Fermi LAT, insofar as the γ-ray-detected misaligned AGNs have larger CD at a given average radio flux. The results are discussed in view of the AGN unification scenario.« less
  • Analysis is presented for 15 months of data taken with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope for 11 non-blazar active galactic nuclei (AGNs), including seven FRI radio galaxies and four FRII radio sources consisting of two FRII radio galaxies and two steep spectrum radio quasars. The broad line FRI radio galaxy 3C 120 is reported here as a {gamma}-ray source for the first time. The analysis is based on directional associations of LAT sources with radio sources in the 3CR, 3CRR, and MS4 (collectively referred to as 3C-MS) catalogs. Seven of the eleven LAT sourcesmore » associated with 3C-MS radio sources have spectral indices larger than 2.3 and, except for the FRI radio galaxy NGC 1275 that shows possible spectral curvature, are well described by a power law. No evidence for time variability is found for any sources other than NGC 1275. The {gamma}-ray luminosities of FRI radio galaxies are significantly smaller than those of the BL Lac objects detected by the LAT, whereas the {gamma}-ray luminosities of the FRII sources are quite similar to those of FSRQs, which could reflect different beaming factors for the {gamma}-ray emission. A core dominance (CD) study of the 3CRR sample indicates that sources closer to the jet axis are preferentially detected with the Fermi LAT, insofar as the {gamma}-ray-detected misaligned AGNs have larger CD at a given average radio flux. The results are discussed in view of the AGN unification scenario.« less
  • Far-Infrared (FIR) photometry from the Photodetector Array Camera and Spectrometer on the Herschel Space Observatory is presented for 313 nearby, hard X-ray selected galaxies from the 58 month Swift Burst Alert Telescope (BAT) Active Galactic Nuclei catalog. The present data do not distinguish between the FIR luminosity distributions at 70 and 160 μm for Seyfert 1 and Seyfert 2 galaxies. This result suggests that if the FIR emission is from the nuclear obscuring material surrounding the accretion disk, then it emits isotropically, independent of orientation. Alternatively, a significant fraction of the 70 and 160 μm luminosity could be from starmore » formation, independent of active galactic nucleus (AGN) type. Using a non-parametric test for partial correlation with censored data, we find a statistically significant correlation between the AGN intrinsic power (in the 14-195 keV band) and the FIR emission at 70 and 160 μm for Seyfert 1 galaxies. We find no correlation between the 14-195 keV and FIR luminosities in Seyfert 2 galaxies. The observed correlations suggest two possible scenarios: (1) if we assume that the FIR luminosity is a good tracer of star formation, then there is a connection between star formation and the AGN at sub-kiloparsec scales, or (2) dust heated by the AGN has a statistically significant contribution to the FIR emission. Using a Spearman rank-order analysis, the 14-195 keV luminosities for the Seyfert 1 and 2 galaxies are weakly statistically correlated with the F {sub 70}/F {sub 160} ratios.« less
  • During its first cycle, the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescope was performing an observational campaign covering a total of about 250 hours on galactic sources. Here we review the results for the very high energy (> 100 GeV) {gamma}-ray emission from some of those sources. We focus on LS I +61 303 and PSR 1951+32.