skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of {sup 11}C-Methionine-Positron Emission Tomography on Gross Tumor Volume Delineation in Stereotactic Radiotherapy of Skull Base Meningiomas

Abstract

Purpose: To evaluate the effect of trimodal image fusion using computed tomography (CT), magnetic resonance imaging (MRI) and {sup 11}C-methionine positron emission tomography (MET-PET) for gross tumor volume delineation in fractionated stereotactic radiotherapy of skull base meningiomas. Patients and Methods: In 32 patients with skull base meningiomas, the gross tumor volume (GTV) was outlined on CT scans fused to contrast-enhanced MRI (GTV-MRI/CT). A second GTV, encompassing the MET-PET positive region only (GTV-PET), was generated. The additional information obtained by MET-PET concerning the GTV delineation was evaluated using the PET/CT/MRI co-registered images. The sizes of the overlapping regions of GTV-MRI/CT and GTV-PET were calculated and the amounts of additional volumes added by the complementing modality determined. Results: The addition of MET-PET was beneficial for GTV delineation in all but 3 patients. MET-PET detected small tumor portions with a mean volume of 1.6 {+-} 1.7 cm{sup 3} that were not identified by CT or MRI. The mean percentage of enlargement of the GTV using MET-PET as an additional imaging method was 9.4% {+-} 10.7%. Conclusions: Our data have demonstrated that integration of MET-PET in radiotherapy planning of skull base meningiomas can influence the GTV, possibly resulting in an increase, as well asmore » in a decrease.« less

Authors:
 [1];  [2]; ;  [3];  [2];  [3];  [2];  [4];  [5]
  1. Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich (Germany), E-mail: sabrina.astner@gmx.de
  2. Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich (Germany)
  3. Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich (Germany)
  4. Department of Radiation Oncology, University of Freiburg, Freiburg (Germany)
  5. Department of Nuclear Medicine, University of Freiburg, Freiburg (Germany)
Publication Date:
OSTI Identifier:
21172470
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 72; Journal Issue: 4; Other Information: DOI: 10.1016/j.ijrobp.2008.02.058; PII: S0360-3016(08)00425-2; Copyright (c) 2008 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; ACCURACY; CARBON 11; COMPUTERIZED TOMOGRAPHY; IMAGES; METHIONINE; NEOPLASMS; NMR IMAGING; PATIENTS; POSITRON COMPUTED TOMOGRAPHY; RADIOTHERAPY; SKULL

Citation Formats

Astner, Sabrina T., Dobrei-Ciuchendea, Mihaela, Essler, Markus, Bundschuh, Ralf A., Sai, Heitetsu, Schwaiger, Markus, Molls, Michael, Weber, Wolfgang A., and Grosu, Anca-Ligia. Effect of {sup 11}C-Methionine-Positron Emission Tomography on Gross Tumor Volume Delineation in Stereotactic Radiotherapy of Skull Base Meningiomas. United States: N. p., 2008. Web. doi:10.1016/j.ijrobp.2008.02.058.
Astner, Sabrina T., Dobrei-Ciuchendea, Mihaela, Essler, Markus, Bundschuh, Ralf A., Sai, Heitetsu, Schwaiger, Markus, Molls, Michael, Weber, Wolfgang A., & Grosu, Anca-Ligia. Effect of {sup 11}C-Methionine-Positron Emission Tomography on Gross Tumor Volume Delineation in Stereotactic Radiotherapy of Skull Base Meningiomas. United States. doi:10.1016/j.ijrobp.2008.02.058.
Astner, Sabrina T., Dobrei-Ciuchendea, Mihaela, Essler, Markus, Bundschuh, Ralf A., Sai, Heitetsu, Schwaiger, Markus, Molls, Michael, Weber, Wolfgang A., and Grosu, Anca-Ligia. Sat . "Effect of {sup 11}C-Methionine-Positron Emission Tomography on Gross Tumor Volume Delineation in Stereotactic Radiotherapy of Skull Base Meningiomas". United States. doi:10.1016/j.ijrobp.2008.02.058.
@article{osti_21172470,
title = {Effect of {sup 11}C-Methionine-Positron Emission Tomography on Gross Tumor Volume Delineation in Stereotactic Radiotherapy of Skull Base Meningiomas},
author = {Astner, Sabrina T. and Dobrei-Ciuchendea, Mihaela and Essler, Markus and Bundschuh, Ralf A. and Sai, Heitetsu and Schwaiger, Markus and Molls, Michael and Weber, Wolfgang A. and Grosu, Anca-Ligia},
abstractNote = {Purpose: To evaluate the effect of trimodal image fusion using computed tomography (CT), magnetic resonance imaging (MRI) and {sup 11}C-methionine positron emission tomography (MET-PET) for gross tumor volume delineation in fractionated stereotactic radiotherapy of skull base meningiomas. Patients and Methods: In 32 patients with skull base meningiomas, the gross tumor volume (GTV) was outlined on CT scans fused to contrast-enhanced MRI (GTV-MRI/CT). A second GTV, encompassing the MET-PET positive region only (GTV-PET), was generated. The additional information obtained by MET-PET concerning the GTV delineation was evaluated using the PET/CT/MRI co-registered images. The sizes of the overlapping regions of GTV-MRI/CT and GTV-PET were calculated and the amounts of additional volumes added by the complementing modality determined. Results: The addition of MET-PET was beneficial for GTV delineation in all but 3 patients. MET-PET detected small tumor portions with a mean volume of 1.6 {+-} 1.7 cm{sup 3} that were not identified by CT or MRI. The mean percentage of enlargement of the GTV using MET-PET as an additional imaging method was 9.4% {+-} 10.7%. Conclusions: Our data have demonstrated that integration of MET-PET in radiotherapy planning of skull base meningiomas can influence the GTV, possibly resulting in an increase, as well as in a decrease.},
doi = {10.1016/j.ijrobp.2008.02.058},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 4,
volume = 72,
place = {United States},
year = {Sat Nov 15 00:00:00 EST 2008},
month = {Sat Nov 15 00:00:00 EST 2008}
}
  • Purpose: To evaluate the role of {sup 11}C-methionine positron emission tomography (MET-PET) in target volume delineation for meningiomas and to determine the interobserver variability. Methods and Materials: Two independent observers performed treatment planning in 10 patients according to a prospective written protocol. In the first step, they used coregistered computed tomography (CT) and magnetic resonance imaging (MRI). In the second step, MET-PET was added to CT/MRI (image fusion based on mutual information). Results: The correlation between gross tumor volume (GTVs) delineated by the two observers based on CT/MRI was r = 0.855 (Spearman's correlation coefficient, p = 0.002) and rmore » = 0.988 (p = 0.000) when MET-PET/CT/MRI were used. The number of patients with agreement in more then 80% of the outlined volume increased with the availability of MET-PET from 1 in 10 to 5 in 10. The median volume of intersection between the regions delineated by two observers increased significantly from 69% (from the composite volume) to 79%, by the addition of MET-PET (p = 0.005). The information of MET-PET was useful to delineate GTV in the area of cavernous sinus, orbit, and base of the skull. Conclusions: The hypothesis-generating findings of potential normal tissue sparing and reduced interobserver variability provide arguments for invasive studies of the correlation between MET-PET images and histologic tumor extension and for prospective trials of target volume delineation with CT/MRI/MET-PET image fusion.« less
  • Purpose: To assess the importance of {sup 11}C-methionine (MET)-positron emission tomography (PET) for clinical target volume (CTV) delineation. Methods and Materials: This retrospective study analyzed 16 patients with malignant glioma (4 patients, anaplastic astrocytoma; 12 patients, glioblastoma multiforme) treated with surgery and carbon ion radiotherapy from April 2002 to Nov 2005. The MET-PET target volume was compared with gross tumor volume and CTV, defined by using computed tomography/magnetic resonance imaging (MRI). Correlations with treatment results were evaluated between positive and negative extended volumes (EVs) of the MET-PET target for CTV. Results: Mean volumes of the MET-PET targets, CTV1 (defined bymore » means of high-intensity volume on T2-weighted MRI), and CTV2 (defined by means of contrast-enhancement volume on T1-weighted MRI) were 6.35, 264.7, and 117.7 cm{sup 3}, respectively. Mean EVs of MET-PET targets for CTV1 and CTV2 were 0.6 and 2.2 cm{sup 3}, respectively. The MET-PET target volumes were included in CTV1 and CTV2 in 13 (81.3%) and 11 patients (68.8%), respectively. Patients with a negative EV for CTV1 had significantly greater survival rate (p = 0.0069), regional control (p = 0.0047), and distant control time (p = 0.0267) than those with a positive EV. Distant control time also was better in patients with a negative EV for CTV2 than those with a positive EV (p = 0.0401). Conclusions: For patients with malignant gliomas, MET-PET has a possibility to be a predictor of outcome in carbon ion radiotherapy. Direct use of MET-PET fused to planning computed tomography will be useful and yield favorable results for the therapy.« less
  • Purpose: To investigate the potential impact of {sup 68}Ga-DOTATOC positron emission tomography ({sup 68}Ga-DOTATOC-PET) in addition to magnetic resonance imaging (MRI) and computed tomography (CT) for retrospectively assessing the gross tumor volume (GTV) delineation of meningiomas of the skull base in patients treated with fractionated stereotactic radiation therapy (FSRT). Methods and Materials: The study population consisted of 48 patients with 54 skull base meningiomas, previously treated with FSRT. After scans were coregistered, the GTVs were first delineated with MRI and CT data (GTV{sub MRI/CT}) and then by PET (GTV{sub PET}) data. The overlapping regions of both datasets resulted in themore » GTV{sub common}, which was enlarged to the GTV{sub final} by adding volumes defined by only one of the complementary modalities (GTV{sub MRI/CT-added} or GTV{sub PET-added}). We then evaluated the contribution of conventional imaging modalities (MRI, CT) and {sup 68}Ga-DOTATOC-PET to the GTV{sub final}, which was used for planning purposes. Results: Forty-eight of the 54 skull base lesions in 45 patients showed increased {sup 68}Ga-DOTATOC uptake and were further analyzed. The mean GTV{sub MRI/CT} and GTV{sub PET} were approximately 21 cm{sup 3} and 25 cm{sup 3}, with a common volume of approximately 15 cm{sup 3}. PET contributed a mean additional GTV of approximately 1.5 cm{sup 3} to the common volume (16% {+-} 34% of the GTV{sub common}). Approximately 4.5 cm{sup 3} of the GTV{sub MRI/CT} was excluded from the contribution to the common volume. The resulting mean GTV{sub final} was significantly smaller than both the GTV{sub MRI/CT} and the GTV{sub PET}. Compared with the initial GTV{sub MRI/CT}, the addition of {sup 68}Ga-DOTATOC-PET resulted in more than 10% modification of the size of the GTV{sub final} in 32 (67%) meningiomas Conclusions: {sup 68}Ga-DOTATOC-PET/CT seems to improve the target volume delineation in skull base meningiomas, often leading to a reduction of GTV compared with results from conventional imaging (MRI and CT).« less
  • Purpose: Patient respiratory motion can cause image artifacts in positron emission tomography (PET) from PET/computed tomography (CT) and change the quantification of PET for thoracic patients. In this study, respiration-averaged CT (ACT) was used to remove the artifacts, and the changes in standardized uptake value (SUV) and gross tumor volume (GTV) were quantified. Methods and Materials: We incorporated the ACT acquisition in a PET/CT session for 216 lung patients, generating two PET/CT data sets for each patient. The first data set (PET{sub HCT}/HCT) contained the clinical PET/CT in which PET was attenuation corrected with a helical CT (HCT). The secondmore » data set (PET{sub ACT}/ACT) contained the PET/CT in which PET was corrected with ACT. We quantified the differences between the two datasets in image alignment, maximum SUV (SUV{sub max}), and GTV contours. Results: Of the patients, 68% demonstrated respiratory artifacts in the PET{sub HCT}, and for all patients the artifact was removed or reduced in the corresponding PET{sub ACT}. The impact of respiration artifact was the worst for lesions less than 50 cm{sup 3} and located below the dome of the diaphragm. For lesions in this group, the mean SUV{sub max} difference, GTV volume change, shift in GTV centroid location, and concordance index were 21%, 154%, 2.4 mm, and 0.61, respectively. Conclusion: This study benchmarked the differences between the PET data with and without artifacts. It is important to pay attention to the potential existence of these artifacts during GTV contouring, as such artifacts may increase the uncertainties in the lesion volume and the centroid location.« less
  • Purpose: To study anatomic biologic contouring (ABC), using a previously described distinct halo, to unify volume contouring methods in treatment planning for head and neck cancers. Methods and Materials: Twenty-five patients with head and neck cancer at various sites were planned for radiation therapy using positron emission tomography/computed tomography (PET/CT). The ABC halo was used in all PET/CT scans to contour the gross tumor volume (GTV) edge. The CT-based GTV (GTV-CT) and PET/CT-based GTV (GTV-ABC) were contoured by two independent radiation oncologists. Results: The ABC halo was observed in all patients studied. The halo had a standard unit value ofmore » 2.19 {+-} 0.28. The mean halo thickness was 2.02 {+-} 0.21 mm. Significant volume modification ({>=}25%) was seen in 17 of 25 patients (68%) after implementation of GTV-ABC. Concordance among observers was increased with the use of the halo as a guide for GTV determination: 6 patients (24%) had a {<=}10% volume discrepancy with CT alone, compared with 22 (88%) with PET/CT (p < 0.001). Interobserver variability decreased from a mean GTV difference of 20.3 cm{sup 3} in CT-based planning to 7.2 cm{sup 3} in PET/CT-based planning (p < 0.001). Conclusions: Using the 'anatomic biologic halo' to contour GTV in PET/CT improves consistency among observers. The distinctive appearance of the described halo and its presence in all of the studied tumors make it attractive for GTV contouring in head and neck tumors. Additional studies are needed to confirm the correlation of the halo with presence of malignant cells.« less