skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Experiment and modeling of CO{sub 2} capture from flue gases at high temperature in a fluidized bed reactor with Ca-based sorbents

Journal Article · · Energy and Fuels
DOI:https://doi.org/10.1021/ef800474n· OSTI ID:21162093
; ;  [1]
  1. Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education (MOE)

The cyclic CO{sub 2} capture and CaCO{sub 3} regeneration characteristics in a small fluidized bed reactor were experimentally investigated with limestone and dolomite sorbents. Kinetic rate constants for carbonation and calcination were determined using thermogravimetric analysis (TGA) data. Mathematical models developed to model the Ca-based sorbent multiple cycles of CO{sub 2} capture and calcination in the bubbling fluidized bed reactor agreed with the experimental data. The experimental and simulated results showed that the CO{sub 2} in flue gases could be absorbed efficiently by limestone and dolomite. The time for high-efficiency CO{sub 2} capture decreased with an increasing number of cycles because of the loss of sorbent activity, and the final CO{sub 2} capture efficiency remained nearly constant as the sorbent reached its final residual capture capacity. In a continuous carbonation and calcination system, corresponding to the sorbent activity loss, the carbonation kinetic rates of sorbent undergoing various cycles are different, and the carbonation kinetic rates of sorbent circulating N times in the carbonation/calcination cycles are also different because of the different residence time of sorbent in the carbonator. Therefore, the average carbonation rate was given based on the mass balance and exit age distribution for sorbent in the carbonator. The CO{sub 2} capture characteristics in a continuous carbonation/calcination system were predicted, taking into consideration the mass balance, sorbent circulation rate, sorbent activity loss, and average carbonation kinetic rate, to give useful information for the reactor design and operation of multiple carbonation/calcination reaction cycles. 27 refs., 15 figs., 1 tab.

OSTI ID:
21162093
Journal Information:
Energy and Fuels, Vol. 23, Issue 1; Other Information: cains@tsinghua.edu.cn; ISSN 0887-0624
Country of Publication:
United States
Language:
English

Similar Records

CO{sub 2} capture from flue gases using three Ca-based sorbents in a fluidized bed reactor
Journal Article · Mon Jun 15 00:00:00 EDT 2009 · Journal of Environmental Engineering (New York) · OSTI ID:21162093

Process analysis of CO{sub 2} capture from flue gas using carbonation/calcination cycles
Journal Article · Tue Jul 15 00:00:00 EDT 2008 · AIChE Journal · OSTI ID:21162093

SO{sub 2} Retention by CaO-Based Sorbent Spent in CO{sub 2} Looping Cycles
Journal Article · Wed Jul 15 00:00:00 EDT 2009 · Industrial and Engineering Chemistry Research · OSTI ID:21162093