skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Retrospection of Chernobyl nuclear accident for decision analysis concerning remedial actions in Ukraine

Abstract

It is considered the efficacy of decisions concerning remedial actions when of-site radiological monitoring in the early and (or) in the intermediate phases was absent or was not informative. There are examples of such situations in the former Soviet Union where many people have been exposed: releases of radioactive materials from 'Krasnoyarsk-26' into Enisey River, releases of radioactive materials from 'Chelabinsk-65' (the Kishtim accident), nuclear tests at the Semipalatinsk Test Site, the Chernobyl nuclear accident etc. If monitoring in the early and (or) in the intermediate phases is absent the decisions concerning remedial actions are usually developed on the base of permanent monitoring. However decisions of this kind may be essentially erroneous. For these cases it is proposed to make retrospection of radiological data of the early and intermediate phases of nuclear accident and to project decisions concerning remedial actions on the base of both retrospective data and permanent monitoring data. In this Report the indicated problem is considered by the example of the Chernobyl accident for Ukraine. Their of-site radiological monitoring in the early and intermediate phases was unsatisfactory. In particular, the pasture-cow-milk monitoring had not been made. All official decisions concerning dose estimations had been made on themore » base of measurements of {sup 137}Cs in body (40 measurements in 135 days and 55 measurements in 229 days after the Chernobyl accident). For the retrospection of radiological data of the Chernobyl accident dynamic model has been developed. This model has structure similar to the structure of Pathway model and Farmland model. Parameters of the developed model have been identified for agricultural conditions of Russia and Ukraine. By means of this model dynamics of 20 radionuclides in pathways and dynamics of doses have been estimated for the early, intermediate and late phases of the Chernobyl accident. The main results are following: - During the first year after the Chernobyl accident 75-93% of Commitment Effective Dose had been formed; - During the first year after the Chernobyl accident 85-90% of damage from radiation exposure had been formed. During the next 50 years (the late phase of accident) only 10-15% of damage from radiation exposure will have been formed; - Remedial actions (agricultural remedial actions as most effective) in Ukraine are intended for reduction of the damage from consumption of production which is contaminated in the late phase of accident. I.e. agricultural remedial actions have been intended for minimization only 10 % of the total damage from radiation exposure; - Medical countermeasures can minimize radiation exposure damage by an order of magnitude greater than agricultural countermeasures. - Thus, retrospection of nuclear accident has essentially changed type of remedial actions and has given a chance to increase effectiveness of spending by an order of magnitude. This example illustrates that in order to optimize remedial actions it is required to use data of retrospection of nuclear accidents in all cases when monitoring in the early and (or) intermediate phases is unsatisfactory. (author)« less

Authors:
 [1]
  1. Russian Research Center 'Kurchatov Insitute', Kurchatov Sq., 1, 123182 Moscow (Russian Federation)
Publication Date:
Research Org.:
American Society of Mechanical Engineers (ASME), Three Park Avenue, New York, NY 10016-5990 (United States); Technological Institute of the Royal Flemish Society of Engineers (TI-K VIV), Het Ingenieurshuis, Desguinlei 214, 2018 Antwerp (Belgium); Belgian Nuclear Society (BNS) - ASBL-VZW, c/o SCK-CEN, Avenue Hermann Debrouxlaan, 40 - B-1160 Brussels (Belgium)
OSTI Identifier:
21156452
Resource Type:
Conference
Resource Relation:
Conference: ICEM'07: 11. International Conference on Environmental Remediation and Radioactive Waste Management, Bruges (Belgium), 2-6 Sep 2007; Other Information: Country of input: France; 9 refs.; Proceedings may be ordered from ASME Order Department, 22 Law Drive, P.O. Box 2300, Fairfield, NJ 07007-2300 (United States)
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 63 RADIATION, THERMAL, AND OTHER ENVIRONMENTAL POLLUTANT EFFECTS ON LIVING ORGANISMS AND BIOLOGICAL MATERIALS; CESIUM 137; INDIUM 135; MILK; RADIATION DOSES; RADIATION MONITORING; RADIOACTIVE MATERIALS; REACTOR ACCIDENTS; RUSSIAN FEDERATION; SEMIPALATINSK TEST SITE; SULFUR 26; UKRAINE

Citation Formats

Georgievskiy, Vladimir. Retrospection of Chernobyl nuclear accident for decision analysis concerning remedial actions in Ukraine. United States: N. p., 2007. Web.
Georgievskiy, Vladimir. Retrospection of Chernobyl nuclear accident for decision analysis concerning remedial actions in Ukraine. United States.
Georgievskiy, Vladimir. 2007. "Retrospection of Chernobyl nuclear accident for decision analysis concerning remedial actions in Ukraine". United States. doi:.
@article{osti_21156452,
title = {Retrospection of Chernobyl nuclear accident for decision analysis concerning remedial actions in Ukraine},
author = {Georgievskiy, Vladimir},
abstractNote = {It is considered the efficacy of decisions concerning remedial actions when of-site radiological monitoring in the early and (or) in the intermediate phases was absent or was not informative. There are examples of such situations in the former Soviet Union where many people have been exposed: releases of radioactive materials from 'Krasnoyarsk-26' into Enisey River, releases of radioactive materials from 'Chelabinsk-65' (the Kishtim accident), nuclear tests at the Semipalatinsk Test Site, the Chernobyl nuclear accident etc. If monitoring in the early and (or) in the intermediate phases is absent the decisions concerning remedial actions are usually developed on the base of permanent monitoring. However decisions of this kind may be essentially erroneous. For these cases it is proposed to make retrospection of radiological data of the early and intermediate phases of nuclear accident and to project decisions concerning remedial actions on the base of both retrospective data and permanent monitoring data. In this Report the indicated problem is considered by the example of the Chernobyl accident for Ukraine. Their of-site radiological monitoring in the early and intermediate phases was unsatisfactory. In particular, the pasture-cow-milk monitoring had not been made. All official decisions concerning dose estimations had been made on the base of measurements of {sup 137}Cs in body (40 measurements in 135 days and 55 measurements in 229 days after the Chernobyl accident). For the retrospection of radiological data of the Chernobyl accident dynamic model has been developed. This model has structure similar to the structure of Pathway model and Farmland model. Parameters of the developed model have been identified for agricultural conditions of Russia and Ukraine. By means of this model dynamics of 20 radionuclides in pathways and dynamics of doses have been estimated for the early, intermediate and late phases of the Chernobyl accident. The main results are following: - During the first year after the Chernobyl accident 75-93% of Commitment Effective Dose had been formed; - During the first year after the Chernobyl accident 85-90% of damage from radiation exposure had been formed. During the next 50 years (the late phase of accident) only 10-15% of damage from radiation exposure will have been formed; - Remedial actions (agricultural remedial actions as most effective) in Ukraine are intended for reduction of the damage from consumption of production which is contaminated in the late phase of accident. I.e. agricultural remedial actions have been intended for minimization only 10 % of the total damage from radiation exposure; - Medical countermeasures can minimize radiation exposure damage by an order of magnitude greater than agricultural countermeasures. - Thus, retrospection of nuclear accident has essentially changed type of remedial actions and has given a chance to increase effectiveness of spending by an order of magnitude. This example illustrates that in order to optimize remedial actions it is required to use data of retrospection of nuclear accidents in all cases when monitoring in the early and (or) intermediate phases is unsatisfactory. (author)},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2007,
month = 7
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • This report describes joint activities of Program 7.1.F, ``Radionuclide Transport in Water and Soil Systems,`` of the USA/Commonwealth of Independent States (CIS) Joint Coordinating Committee of Civilian Nuclear Reactor Safety to study the hydrogeochemical behavior of radionuclides released to the Pripyat and Dnieper rivers from the Chernobyl Nuclear Power Plant in Ukraine. These joint activities included rapid evaluation of radionuclide distributions in the Pripyat and Dnieper river system and field data evaluation and modeling for the 1993 summer flood to assist the Ukrainian government in their emergency response during the flood. In July-August 1993, heavy rainfall over the Pripyat Rivermore » Catchment in Belarus and Ukraine caused severe flooding, significantly raising {sup 90}Sr concentrations in the river. Near the Chernobyl area, the maximum {sup 90}Sr concentration in the Pripyat River reached 20--25 PCi/L in early August; near the Pripyat River mouth, the concentration rose to 35 pCi/L. The peak {sup 90}Sr concentration in the Kiev Reservoir (a major source of drinking water for Kiev) was 12 pCi/L. Based on these measured radionuclide levels, additional modeling results and the assumption of water purification in a water treatment station, {sup 90}Sr concentrations in Kiev`s drinking water were estimated to be less than 8 pCi/L. Unlike {sup 90}Sr, {sup 137}Cs concentrations in the Pripyat River during the flood did not rise significantly to the pre-flood levels. Estimated {sup 137}Cs concentrations for the Kiev drinking water were two orders of magnitude lower than the drinking water standard of 500 pCi/L for {sup 137}Cs.« less
  • The research objects comprise town buildings and farmhouses selected so that they cover various types of contamination (hot particles, ionic radionuclide fallout) as well as various types of building materials (brick, wood, concrete, iron, roofing slate, tile, etc.). Field work includes the determination of the contamination character of every object, in-situ experiments on decontamination, sampling of building materials and substances used in the experiments for further studies of sorption, weathering, decontamination and disposal characteristics in laboratories. Natural Ca-form of bentonite from the Cherkassy deposit modified into Na-form is a basic clay material used along with other clay minerals, in themore » investigations for decontamination of buildings and other mitigation purposes. The results of the studies show that clay technology is ideally suitable for large scale decontamination operations in the urban environment since it is safe, practical, efficient, and cost effective.« less
  • This article addresses the decision-making processes that are involved in the management of radioactive wastes that were created as a result of the Chernobyl reactor accident. The authors propose a systematic approach to reach this goal. Radiation safety must be provided in order to provide protection for man and the environment at the present time and in the future.
  • The collaboration with the Italian Safety Authority (DISP), started in July 1986, has the aim of studying, from a neutronic point of view, the possible initiator event and the accident dynamics in unit four of the Chernobly nuclear power plant. This report was produced within the framework of that collaboration. A main condition of the present work was making use of standard calculational methods employed in nuclear criticality safety analysis. This means that the neutron multiplication factor calculation should be made with the modules and the cross-section libraries of the SCALE system or in any case with some KENO IVmore » version and the burnup calculation with the ORIGEN code.« less
  • The most highly contaminated surface areas from cesium-137 fallout from the April 1986 accident at the Chernobyl` nuclear power station in Ukraine occur within the 30-km radius evacuation zone set up around the station, and an 80-km lobe extending to the west-southwest. Lower levels of contamination extend 300 km to the west of the power station. The deposition of this radioactive dust on the surface and the subsequent entombment of the damaged reactor effectively result in the de facto establishment of an above-ground nuclear waste storage site. This site is located on a thick sedimentary sequence of loose, mostly clasticmore » deposits, with a shallow (generally 3-5 m) water table. The geology, the presence of surface water, a shallow water table, and leaky aquifers at depth make this an unfavorable environment for the long-term containment and storage of the radioactive debris. An understanding of the general geology and hydrology of the area is important to assess the environmental impact of this unintended waste storage site, and to evaluate the potential for radionuclide migration through the soil and rock and into subsurface aquifers and nearby rivers. 27 refs., 3 figs.« less