skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Proven concepts for LLW-treatment of large components for free release and recycling

Conference ·
OSTI ID:21156385

This paper describes Studsvik's technical concept of LLW-treatment of large, retired components from nuclear installations in operation or in decommissioning. Many turbines, heat exchangers and other LLW components have been treated in Studsvik during the last 20 years. This also includes development of techniques and tools, especially our latest experience gained under the pilot project for treatment of one full size PWR steam generator from Ringhals NPP, Sweden. The ambition of this pilot project was to minimize the waste volumes for disposal and to maximize the material recycling. Another objective, respecting ALARA, was the successful minimization of the dose exposure to the personnel. The treatment concept for large, retired components comprises the whole sequence of preparations from road and sea transports and the management of the metallic LLW by segmentation, decontamination and sorting using specially devised tools and shielded treatment cell, to the decision criteria for recycling of the metals, radiological analyses and conditioning of the residual waste into the final packages suitable for customer-related disposal. For e.g. turbine rotors with their huge number of blades the crucial moments are segmentation techniques, thus cold segmentation is a preferred method to keep focus on minimization of volumes for secondary waste. Also a variety of decontamination techniques using blasting cabinet or blasting tumbling machines keeps secondary waste production to a minimum. The technical challenge of the treatment of more complicated components like steam generators also begins with the segmentation. A first step is the separation of the steam dome in order to dock the rest of the steam generator to a specially built treatment cell. Thereafter, the decontamination of the tube bundle is performed using a remotely controlled manipulator. After decontamination is concluded the cutting of the tubes as well as of the shell is performed in the same cell with remotely controlled tools. Some of the sections of steam dome shell or turbine shafts can be cleared directly for unconditional reuse without melting after decontamination and sampling program. Experience shows that the amount of material possible for clearance for unconditional use is between 95 - 97 % for conventional metallic scrap. For components like turbines, heat exchangers or steam generators the recycling ratio can vary to about 80 - 85% of the initial weight. (authors)

Research Organization:
American Society of Mechanical Engineers (ASME), Three Park Avenue, New York, NY 10016-5990 (United States); Technological Institute of the Royal Flemish Society of Engineers (TI-K VIV), Het Ingenieurshuis, Desguinlei 214, 2018 Antwerp (Belgium); Belgian Nuclear Society (BNS) - ASBL-VZW, c/o SCK-CEN, Avenue Hermann Debrouxlaan, 40 - B-1160 Brussels (Belgium)
OSTI ID:
21156385
Resource Relation:
Conference: ICEM'07: 11. International Conference on Environmental Remediation and Radioactive Waste Management, Bruges (Belgium), 2-6 Sep 2007; Other Information: Country of input: France; 1 ref.; Proceedings may be ordered from ASME Order Department, 22 Law Drive, P.O. Box 2300, Fairfield, NJ 07007-2300 (United States)
Country of Publication:
United States
Language:
English