skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Case Studies on Facility Characterization with X-Ray Fluorescence Spectrometry

Abstract

A hand-held x-ray fluorescence (XRF) analyzer is being used to characterize facilities in support of demolition activities at the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. Approximately 500 facilities at the U.S. Department of Energy site are being demolished under the ETTP Decontamination and Decommissioning (D and D) project. Facility characterization is being conducted to provide data for waste profiling and identify hazards to demolition workers. XRF spectrometry is a non-destructive analytical technique used to identify and quantify the elemental composition of a substance based on the intensity of its characteristic X-ray emission wavelength or energy. The Innov-X Systems{sup R} Model XT-245S XRF analyzer used at ETTP is equipped with a silver anode x-ray tube and a Si PIN diode detector. X-rays are generated by electrical current, eliminating the need for radioactive isotopes. Electronic components can be powered by either a lithium-ion battery or an A/C adapter, and the instrument is controlled by an iPAQ{sup R} pocket personal computer. The unit has two primary operating modes. Alloy analysis mode measures percent levels of elements in metals such as a pipes, valves, equipment, or construction materials. Soil mode provides parts-per-million (ppm) quantities in bulk solids like concrete dust, residue,more » paint chips, or soil. The hand-held unit can analyze material in place, or it can analyze samples in a test stand by remote operation. This paper present some case studies demonstrating a variety of XRF applications for facility characterization: Metal Materials Characterization, Lead Paint Identification, Hot Spot Delineation, Bulk Solids Testing. XRF has been the analytical technique of choice for identifying metal alloy components and has also been useful in analyzing bulk materials. Limitations of XRF testing include the inability to directly analyze elements with low atomic weights. Light elements such as beryllium and aluminum do not emit characteristic x-rays that the instrument can detect. However, process knowledge and existing historical data can be used to evaluate the presence of beryllium, which has been widely characterized at ETTP using industrial hygiene smear samples. Aluminum can be indirectly measured in aluminum alloys using x-ray scatter lines. The Innov-X Systems XRF has a light elements setting that employs this method, and it has been widely used on the ETTP D and D project. Another potential limitation involves analyzing samples that are radioactive, or analyzing samples in a radioactive environment. Radiation (including gamma, beta, and high energy alpha particles) acts as another excitation mechanism to create x-rays from materials being analyzed. Samples analyzed under those conditions will absorb more x-rays than just those emitted by the instrument silver anode tube, resulting in a potential high bias. This type of interference is identified by radiological surveys and minimized by relocating measurements to areas of lower activity when feasible.« less

Authors:
; ; ;  [1]
  1. Bechtel Jacobs Company LLC: P.O. Box 4699, Oak Ridge, Tennessee, 37831-7405 (United States)
Publication Date:
Research Org.:
American Nuclear Society, 555 North Kensington Avenue, La Grange Park, Illinois 60526 (United States)
OSTI Identifier:
21144174
Resource Type:
Conference
Resource Relation:
Conference: DD and R 2007: ANS Topical Meeting on Decommissioning, Decontamination, and Reutilization 2007, Chattanooga, TN (United States), 16-19 Sep 2007; Other Information: Country of input: France; Related Information: In: Proceedings of the 2007 ANS Topical Meeting on Decommissioning, Decontamination, and Reutilization - DD and R 2007, 336 pages.
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; ALUMINIUM; ALUMINIUM ALLOYS; DECOMMISSIONING; DECONTAMINATION; DEMOLITION; FLUORESCENCE SPECTROSCOPY; OAK RIDGE; RADIOACTIVE WASTES; X-RAY FLUORESCENCE ANALYSIS; X-RAY TUBES

Citation Formats

Kirk, K T, Brooksbank, R D, Meszaros, J M, and Towery, W E. Case Studies on Facility Characterization with X-Ray Fluorescence Spectrometry. United States: N. p., 2008. Web.
Kirk, K T, Brooksbank, R D, Meszaros, J M, & Towery, W E. Case Studies on Facility Characterization with X-Ray Fluorescence Spectrometry. United States.
Kirk, K T, Brooksbank, R D, Meszaros, J M, and Towery, W E. 2008. "Case Studies on Facility Characterization with X-Ray Fluorescence Spectrometry". United States.
@article{osti_21144174,
title = {Case Studies on Facility Characterization with X-Ray Fluorescence Spectrometry},
author = {Kirk, K T and Brooksbank, R D and Meszaros, J M and Towery, W E},
abstractNote = {A hand-held x-ray fluorescence (XRF) analyzer is being used to characterize facilities in support of demolition activities at the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. Approximately 500 facilities at the U.S. Department of Energy site are being demolished under the ETTP Decontamination and Decommissioning (D and D) project. Facility characterization is being conducted to provide data for waste profiling and identify hazards to demolition workers. XRF spectrometry is a non-destructive analytical technique used to identify and quantify the elemental composition of a substance based on the intensity of its characteristic X-ray emission wavelength or energy. The Innov-X Systems{sup R} Model XT-245S XRF analyzer used at ETTP is equipped with a silver anode x-ray tube and a Si PIN diode detector. X-rays are generated by electrical current, eliminating the need for radioactive isotopes. Electronic components can be powered by either a lithium-ion battery or an A/C adapter, and the instrument is controlled by an iPAQ{sup R} pocket personal computer. The unit has two primary operating modes. Alloy analysis mode measures percent levels of elements in metals such as a pipes, valves, equipment, or construction materials. Soil mode provides parts-per-million (ppm) quantities in bulk solids like concrete dust, residue, paint chips, or soil. The hand-held unit can analyze material in place, or it can analyze samples in a test stand by remote operation. This paper present some case studies demonstrating a variety of XRF applications for facility characterization: Metal Materials Characterization, Lead Paint Identification, Hot Spot Delineation, Bulk Solids Testing. XRF has been the analytical technique of choice for identifying metal alloy components and has also been useful in analyzing bulk materials. Limitations of XRF testing include the inability to directly analyze elements with low atomic weights. Light elements such as beryllium and aluminum do not emit characteristic x-rays that the instrument can detect. However, process knowledge and existing historical data can be used to evaluate the presence of beryllium, which has been widely characterized at ETTP using industrial hygiene smear samples. Aluminum can be indirectly measured in aluminum alloys using x-ray scatter lines. The Innov-X Systems XRF has a light elements setting that employs this method, and it has been widely used on the ETTP D and D project. Another potential limitation involves analyzing samples that are radioactive, or analyzing samples in a radioactive environment. Radiation (including gamma, beta, and high energy alpha particles) acts as another excitation mechanism to create x-rays from materials being analyzed. Samples analyzed under those conditions will absorb more x-rays than just those emitted by the instrument silver anode tube, resulting in a potential high bias. This type of interference is identified by radiological surveys and minimized by relocating measurements to areas of lower activity when feasible.},
doi = {},
url = {https://www.osti.gov/biblio/21144174}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jan 15 00:00:00 EST 2008},
month = {Tue Jan 15 00:00:00 EST 2008}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: