skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Expression of ovarian microsomal epoxide hydrolase and glutathione S-transferase during onset of VCD-induced ovotoxicity in B6C3F{sub 1} mice

Journal Article · · Toxicology and Applied Pharmacology
 [1];  [2]
  1. University of Arizona, Department of Physiology, Tucson, Arizona, 85724-5051 (United States)
  2. University of Arizona, Department of Pharmacology, Tucson, Arizona, 85724-5050 (United States)

4-vinylcyclohexene diepoxide (VCD) specifically destroys small pre-antral follicles in the rodent ovary. VCD can be detoxified to an inactive tetrol by microsomal epoxide hydrolase (mEH), or by conjugation to glutathione (GSH) by glutathione S-transferase (GST). Formation of VCD-GSH adducts in the mouse ovary 4 h after VCD exposure (0.57 mmol/kg/day) has been demonstrated. Because the mouse ovary expresses both mEH and GST, expression of mEH and GST pi and mu during a time-course of VCD-induced ovotoxicity was evaluated in a neonatal mouse ovarian culture system. Ovaries from postnatal day 4 (PND4) B6C3F{sub 1} mice were incubated with VCD (15 {mu}M) for 2, 4, 6, 8, 10, 12, or 15 days. Following incubation, ovaries were histologically evaluated, or assessed for mRNA or protein expression. VCD did not cause follicle loss (p > 0.05) on days 2, 4, or 6 of culture. At days 8, 10, 12, and 15, VCD reduced (p < 0.05) both primordial and primary follicle numbers. Increased (p < 0.05) expression of mEH, GST pi and GST mu mRNA was detected after 4 days of VCD exposure. This expression was reduced on days 6 and 8, when follicle loss was underway, but increased (p < 0.05) after 10 days of exposure. mEH and GST pi proteins were elevated (p < 0.05) following 8 days of VCD-exposure however there was no increase in GST mu protein. These findings suggest that with continuous exposure to VCD, increased expression of detoxification enzymes may participate in retarding the onset of follicle loss, but that this loss cannot ultimately be prevented.

OSTI ID:
21140884
Journal Information:
Toxicology and Applied Pharmacology, Vol. 230, Issue 1; Other Information: DOI: 10.1016/j.taap.2008.02.016; PII: S0041-008X(08)00087-2; Copyright (c) 2008 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0041-008X
Country of Publication:
United States
Language:
English