skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and characterization of a new layered organic-inorganic hybrid nickel(II) 1,4:5,8-naphthalenediimide bis-phosphonate, exhibiting canted antiferromagnetism, with T{sub c}{approx}21 K

Abstract

A new Ni(II) layered hybrid organic-inorganic compound of formula Ni{sub 2}[(NDI-BP)(H{sub 2}O){sub 2}].2H{sub 2}O has been prepared in very mild conditions from N,N'-bis(2-phosphonoethyl)napthalene-1,4:5,8-tetracarboximide (NDI-BP ligand) and NiCl{sub 2}. The X-ray powder structure characterization of the title compound suggests a pillared layered organic-inorganic hybrid structure. The distance between the organic and inorganic layers has been found to be 17.8 A. The inorganic layers consist of corner sharing [NiO{sub 5}(H{sub 2}O)] octahedra and they are pillared by the diphosphonate groups. DC and AC magnetic measurements as a function of temperature and field indicate the presence of 2D antiferromagnetic exchange interactions between the nearest-neighbor Ni(II) ions below 100 K. A long-range magnetic ordering at T{sub c}{approx}21 K has been established and is attributed to the presence of spin canting. AC magnetic measurements as a function of temperature at different frequencies confirm the occurrence of the magnetic ordering temperature at T=21 K and the presence of a slight structural disorder in the title compound. - Graphical abstract: A new layered hybrid organic-inorganic Ni(II) N,N'-bis(2-phosphonoethyl)-naphthalene 1,4:5,8 tetracarboxydiimide complex has been synthesized and characterized. Magnetic measurements as a function of temperature and at different fields show that the compound is magnetically ordered below T{sub c}{approx}21 K.

Authors:
 [1];  [2];  [3];  [2]
  1. Istituto di Struttura della Materia del CNR, Sez. di Montelibretti, Via Salaria km 29.3, I-00016 Monterotondo Stazione (Italy), E-mail: Elvira.Bauer@ism.cnr.it
  2. Istituto di Struttura della Materia del CNR, Sez. di Montelibretti, Via Salaria km 29.3, I-00016 Monterotondo Stazione (Italy)
  3. Instituto de Ciencia Molecular, University of Valencia, Pol La Coma s/n, E-46980 Paterna, Valencia (Spain), E-mail: carlos.gomez@uv.es
Publication Date:
OSTI Identifier:
21128300
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 181; Journal Issue: 5; Other Information: DOI: 10.1016/j.jssc.2008.02.014; PII: S0022-4596(08)00103-5; Copyright (c) 2008 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ANTIFERROMAGNETISM; CONDENSED AROMATICS; EXCHANGE INTERACTIONS; LAYERS; LIGANDS; MAGNETIZATION; NICKEL CHLORIDES; NICKEL COMPLEXES; PHOSPHONATES; SPIN; SYNTHESIS; TEMPERATURE DEPENDENCE; TEMPERATURE RANGE 0013-0065 K; TEMPERATURE RANGE 0065-0273 K; X RADIATION

Citation Formats

Bauer, Elvira M., Bellitto, Carlo, Gomez Garcia, Carlos J., and Righini, Guido. Synthesis and characterization of a new layered organic-inorganic hybrid nickel(II) 1,4:5,8-naphthalenediimide bis-phosphonate, exhibiting canted antiferromagnetism, with T{sub c}{approx}21 K. United States: N. p., 2008. Web. doi:10.1016/j.jssc.2008.02.014.
Bauer, Elvira M., Bellitto, Carlo, Gomez Garcia, Carlos J., & Righini, Guido. Synthesis and characterization of a new layered organic-inorganic hybrid nickel(II) 1,4:5,8-naphthalenediimide bis-phosphonate, exhibiting canted antiferromagnetism, with T{sub c}{approx}21 K. United States. doi:10.1016/j.jssc.2008.02.014.
Bauer, Elvira M., Bellitto, Carlo, Gomez Garcia, Carlos J., and Righini, Guido. Thu . "Synthesis and characterization of a new layered organic-inorganic hybrid nickel(II) 1,4:5,8-naphthalenediimide bis-phosphonate, exhibiting canted antiferromagnetism, with T{sub c}{approx}21 K". United States. doi:10.1016/j.jssc.2008.02.014.
@article{osti_21128300,
title = {Synthesis and characterization of a new layered organic-inorganic hybrid nickel(II) 1,4:5,8-naphthalenediimide bis-phosphonate, exhibiting canted antiferromagnetism, with T{sub c}{approx}21 K},
author = {Bauer, Elvira M. and Bellitto, Carlo and Gomez Garcia, Carlos J. and Righini, Guido},
abstractNote = {A new Ni(II) layered hybrid organic-inorganic compound of formula Ni{sub 2}[(NDI-BP)(H{sub 2}O){sub 2}].2H{sub 2}O has been prepared in very mild conditions from N,N'-bis(2-phosphonoethyl)napthalene-1,4:5,8-tetracarboximide (NDI-BP ligand) and NiCl{sub 2}. The X-ray powder structure characterization of the title compound suggests a pillared layered organic-inorganic hybrid structure. The distance between the organic and inorganic layers has been found to be 17.8 A. The inorganic layers consist of corner sharing [NiO{sub 5}(H{sub 2}O)] octahedra and they are pillared by the diphosphonate groups. DC and AC magnetic measurements as a function of temperature and field indicate the presence of 2D antiferromagnetic exchange interactions between the nearest-neighbor Ni(II) ions below 100 K. A long-range magnetic ordering at T{sub c}{approx}21 K has been established and is attributed to the presence of spin canting. AC magnetic measurements as a function of temperature at different frequencies confirm the occurrence of the magnetic ordering temperature at T=21 K and the presence of a slight structural disorder in the title compound. - Graphical abstract: A new layered hybrid organic-inorganic Ni(II) N,N'-bis(2-phosphonoethyl)-naphthalene 1,4:5,8 tetracarboxydiimide complex has been synthesized and characterized. Magnetic measurements as a function of temperature and at different fields show that the compound is magnetically ordered below T{sub c}{approx}21 K.},
doi = {10.1016/j.jssc.2008.02.014},
journal = {Journal of Solid State Chemistry},
number = 5,
volume = 181,
place = {United States},
year = {Thu May 15 00:00:00 EDT 2008},
month = {Thu May 15 00:00:00 EDT 2008}
}
  • A new 3D-layered inorganic-organic hybrid [D/L-C{sub 6}H{sub 13}O{sub 2}N-H]{sub 3}[(PO{sub 4})W{sub 12}O{sub 36}].4.5H{sub 2}O (1), as racemic material in the solid phase, has been synthesized and fully characterized by elemental microanalysis, single crystal X-ray diffraction, and infrared, Raman, and proton nuclear magnetic resonance spectroscopes. The most unique structural feature of 1 is its three-dimensional inorganic infinite tunnel-like framework that results in weak van der Waals interactions along the a-axis. A weak interlayer interaction between the titled layers provides a desirable condition to explore its potential as a host in a host-guest complex. The racemization has been observed in the crystalmore » structure with the centric space group (P2{sub 1}/c). The latter consists of {alpha}-[(PO{sub 4})W{sub 12}O{sub 36}]{sup 3-}and [D/L-C{sub 6}H{sub 13}O{sub 2}N-H]{sup +} moieties with water molecules linked together by a complex network of hydrogen bond interactions.« less
  • A novel tin(II) phenylbis(phosphonate) compound has been synthesized hydrothermally and its structure has been determined by single crystal X-ray diffraction. The structure is monoclinic, space group P2{sub 1}/c (no. 14), a=4.8094(4), b=16.2871(13), c=6.9107(6)A; {beta}=106.292(6){sup o}, V=519.59(7)A{sup 3}, Z=2. The three-dimensional structure consists of 3-coordinated tin and 4-coordinated phosphorus double layers separated (pillared) by phenyl rings. These phenyl rings are placed 4.8A apart along the a-axis in the structure resulting in lower surface area ({approx}14m{sup 2}/g). The porosity has been increased by replacing phenyl groups by methyl groups ({approx}31m{sup 2}/g)
  • Co[(CH{sub 3}PO{sub 3})(H{sub 2}O)] (1) and Co[(C{sub 2}H{sub 5}PO{sub 3})(H{sub 2}O)] (2) were prepared by the hydrothermal method and isolated as blue-violet platelet crystals. They were characterized by X-ray diffraction, FT-IR, TGA-DSC techniques and their magnetic properties studied by a dc-SQUID magnetometer. Compound (1) shows an hybrid layered structure, made of alternating inorganic and organic layers along the a-direction of the unit cell. The inorganic layers contain Co(II) ions six-coordinated by five phosphonate oxygen atoms and one from the water molecule. These layers are separated by bi-layers of methyl groups and van der Waals contacts are established between them. Inmore » compound (2), the layered hybrid structure is rather similar to that described for compound (1), but the alternation of the inorganic and organic layers is along the b-direction of the unit cell. The magnetic behavior of (1) and (2) as function of temperature and magnetic field was studied. The compounds obey the Curie-Weiss law at temperatures above 100K, the Curie C, and Weiss {theta} constants for the methyl derivative being C=3.36cm{sup 3}Kmol{sup -1} and {theta}=-53K and for the ethyl derivative C=3.62cm{sup 3}Kmol{sup -1} and {theta}=-75K, respectively. The observed magnetic moments for Co atom at room temperature (i.e. {mu}{sub eff}=5.18 and 5.38 BM, respectively) are higher than those expected for a spin-only value for high spin Co(II) (S=3/2), revealing a substantial orbital contribution to the magnetic moment. The negative values of {theta} are an indication of the presence of antiferromagnetic exchange couplings between the near-neighbors Co(II) ions, within the layers. [Co(C{sub n}H{sub 2n+1}PO{sub 3})(H{sub 2}O)] (n=1,2) are 2D Ising antiferromagnets at low temperatures.« less
  • Highlights: {yields} A novel inorganic-organic hybrid vanadate of nickel(II) coordination complex with pyrazine has been synthesized hydrothermally. {yields} The thermal and spectroscopic behavior has been studied. {yields} The compound shows AFM interactions which has been fitted to a magnetic model of lineal chains. -- Abstract: The three-dimensional hybrid compound Ni{sub 3}(C{sub 4}H{sub 4}N{sub 2}){sub 3}(V{sub 8}O{sub 23}) has been synthesized by mild hydrothermal methods under autogenous pressure at 170 {sup o}C. The structure of the phase is stable until 380 {sup o}C. The removal of the pyrazine molecules from the structure induces its collapse. The IR spectrum shows the vibrationmore » modes of the pyrazine molecule and those of the [VO{sub 4}]{sup 3-} groups. A UV-visible spectrum shows the characteristic bands of the Ni(II) d{sup 8}-high-spin cation in a slightly distorted octahedral coordination. Magnetic measurements indicate the existence of antiferromagnetic interactions that can be fitted with a chain model to give g = 2.31, J/k = -5.3, and zJ'/k = -5.5.« less
  • A novel nanomolecular organic-inorganic hybrid compound, Na{sub 2}[NH(CH{sub 2}CH{sub 2}OH){sub 3}]{sub 4}{l_brace}Mo{sub 36}O{sub 112}(OH{sub 2}){sub 14} [OHCH{sub 2}CH{sub 2}NH(CH{sub 2}CH{sub 2}OH){sub 2}]{sub 2}{r_brace}.nH{sub 2}O (n{approx}72) (1), was synthesized in aqueous acidic medium with a high yield (85%) and characterized by single crystal X-ray crystallography, IR spectroscopy, {sup 1}H NMR, XRD and TG analysis. Compound 1 exhibits a supramolecular one-dimensional chainlike structure which consists of nanosized {l_brace}[Mo{sub 36}O{sub 112}(H{sub 2}O){sub 14}(HOC{sub 2}H{sub 4}){sub 2}NHC{sub 2}H{sub 4}OH]{sub 2}{r_brace}{sup 6-} anions ({l_brace}Mo{sub 36}(TEAH{sup +}){sub 2}{r_brace} for short) and cage-like dimers of TEAH{sup +} cations (TEAH{sup +}=protonated triethanolamine). In the {l_brace}Mo{sub 36}(TEAH{sup +}){sub 2}{r_brace}more » anion, two TEAH{sup +} cations connect to one ring-like {l_brace}[Mo{sub 36}O{sub 112}(H{sub 2}O){sub 16}]{sup 8-} ({l_brace}Mo{sub 36}{r_brace} for short) anion by covalent bonds via replacing two water ligands by the alkoxy ligands. The {l_brace}Mo{sub 36}(TEAH{sup +}){sub 2}{r_brace} unit could be considered as nanosized chelating ligand with [2N, 4O] donor sets. Crystal Data: triclinic, P-1, a=16.019(9) A, b=17.372(4) A, c=18.287(2) A, {alpha}=101.410(0){sup o}, {beta}=95.904(0){sup o}, {gamma}=116.332(0){sup o}, Z=1. - Graphical abstract: A novel organic-inorganic hybrid material based on macroisopolyanion {l_brace}Mo{sub 36}{r_brace} has been synthesized and characterized by X-ray single-crystal crystallography, XRD, IR spectroscopy, and TG analysis. The material exhibits a supramolecular one-dimensional chainlike structure. The {l_brace}Mo{sub 36}(TEAH{sup +}){sub 2}{r_brace} unit could be considered as nanosized chelating ligand with [2N, 4O] donor sets.« less