skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Diode laser absorption measurement and analysis of HCN in atmospheric-pressure, fuel-rich premixed methane/air flames

Journal Article · · Combustion and Flame
;  [1];  [1]
  1. Laboratory for Fuel and Combustion Science, University of Groningen (Netherlands)

Measurements of HCN in flat, fuel-rich premixed methane/air flames at atmospheric pressure are reported. Quartz-microprobe sampling followed by wavelength modulation absorption spectroscopy with second harmonic detection was used to obtain an overall measurement uncertainty of better than 20% for mole fractions HCN on the order of 10 ppm. The equivalence ratio, {phi}, was varied between 1.3 and 1.5, while the flame temperature was varied independently by changing the mass flux through the burner surface at constant equivalence ratio. Under the conditions of the experiments, the peak mole fractions vary little, in the range of 10-15 ppm. Increasing the flame temperature by increasing the mass flux had little influence on the peak mole fraction, but accelerated HCN burnout substantially. At high equivalence ratio and low flame temperature, HCN burnout is very slow: at {phi}=1.5, {proportional_to}10ppm HCN is still present 7 mm above the burner surface. Substantial quantitative disagreement is observed between the experimental profiles and those obtained from calculations using GRI-Mech 3.0, with the calculations generally overpredicting the results significantly. Changing the rates of key formation and consumption reactions for HCN can improve the agreement, but only by making unreasonable changes in these rates. Inclusion of reactions describing NCN formation and consumption in the calculations improves the agreement with the measurements considerably. (author)

OSTI ID:
21116110
Journal Information:
Combustion and Flame, Vol. 155, Issue 1-2; Other Information: Elsevier Ltd. All rights reserved; ISSN 0010-2180
Country of Publication:
United States
Language:
English