Shock-wave-induced enhancement of optical emission in nitrogen afterglow plasma
This paper reports measurements of optical emission enhancement at the shock front of Mach 1.5 to Mach 3.5 shockwaves propagating in the afterglow of a 0.75 Torr nitrogen glow discharge. Electrically-generated shocks pass through the afterglow and create noticeable enhancements of the B {sup 3}{pi}{sub g}-A {sup 3}{sigma}{sub u}{sup +} and C {sup 3}{pi}{sub u}-B {sup 3}{pi}{sub g} transitions of nitrogen. Under our discharge conditions, the electron Debye length was approximately the same magnitude as the shock thickness; this allows the possibility of a space-charge region extending beyond the neutral shockwave discontinuity. Previous researchers have measured enhancement in the Bmore »