skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Very-high-temperature molecular dynamics

Abstract

It is shown that a modified scheme of density functional theory, using the Thomas-Fermi kinetic energy functional for the electrons, is well suited to perform very-high-temperature molecular dynamics simulations on high-Z elements. As an example, iron on the principal Hugoniot is simulated up to 5 keV and 5 times the normal density, giving an equation of state in agreement with current models. Ionic structure is obtained and is given to an excellent level of precision by the structure of the one-component plasma computed for a coupling parameter corresponding to Thomas-Fermi ionization.

Authors:
; ;  [1]
  1. Departement de Physique Theorique et Appliquee, CEA/DAM Ile-de-France, BP12, 91680 Bruyeres-le-Chatel Cedex (France)
Publication Date:
OSTI Identifier:
21069759
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics; Journal Volume: 73; Journal Issue: 1; Other Information: DOI: 10.1103/PhysRevE.73.016403; (c) 2006 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CHARGED-PARTICLE TRANSPORT; COUPLING; DENSITY FUNCTIONAL METHOD; ELECTRON TEMPERATURE; ELECTRONS; EQUATIONS OF STATE; ION TEMPERATURE; IONIZATION; IRON; KEV RANGE; KINETIC ENERGY; MOLECULAR DYNAMICS METHOD; PLASMA; PLASMA SIMULATION; THOMAS-FERMI MODEL

Citation Formats

Lambert, Flavien, Clerouin, Jean, and Zerah, Gilles. Very-high-temperature molecular dynamics. United States: N. p., 2006. Web. doi:10.1103/PHYSREVE.73.016403.
Lambert, Flavien, Clerouin, Jean, & Zerah, Gilles. Very-high-temperature molecular dynamics. United States. doi:10.1103/PHYSREVE.73.016403.
Lambert, Flavien, Clerouin, Jean, and Zerah, Gilles. Sun . "Very-high-temperature molecular dynamics". United States. doi:10.1103/PHYSREVE.73.016403.
@article{osti_21069759,
title = {Very-high-temperature molecular dynamics},
author = {Lambert, Flavien and Clerouin, Jean and Zerah, Gilles},
abstractNote = {It is shown that a modified scheme of density functional theory, using the Thomas-Fermi kinetic energy functional for the electrons, is well suited to perform very-high-temperature molecular dynamics simulations on high-Z elements. As an example, iron on the principal Hugoniot is simulated up to 5 keV and 5 times the normal density, giving an equation of state in agreement with current models. Ionic structure is obtained and is given to an excellent level of precision by the structure of the one-component plasma computed for a coupling parameter corresponding to Thomas-Fermi ionization.},
doi = {10.1103/PHYSREVE.73.016403},
journal = {Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics},
number = 1,
volume = 73,
place = {United States},
year = {Sun Jan 15 00:00:00 EST 2006},
month = {Sun Jan 15 00:00:00 EST 2006}
}
  • The applicability of quantum molecular dynamics to the calculation of the equation of state of a dense plasma is limited at high temperature by computational cost. Orbital-free molecular dynamics, based on the Thomas-Fermi semiclassical approximation and possibly on a gradient correction, is the only simulation method currently available at high temperature. We show in the case of a dense boron plasma that the two approaches give pressures differing by a few percent even at temperatures as high as a few tens of electron-volts. We indicate how the pressures obtained by orbital-free molecular dynamics can be corrected in order to appearmore » as a limit of the quantum molecular dynamics results as temperature increases. We thus obtain a method to calculate the equation of state of a dense plasma up to high temperatures where quantum molecular dynamics cannot be directly implemented.« less
  • The design of passive heat removal systems is one of the main concerns for the modular very high temperature gas-cooled reactors (VHTR) vessel cavity. The reactor cavity cooling system (RCCS) is a key heat removal system during normal and off-normal conditions. The design and validation of the RCCS is necessary to demonstrate that VHTRs can survive to the postulated accidents. The computational fluid dynamics (CFD) STAR-CCM+/V3.06.006 code was used for three-dimensional system modeling and analysis of the RCCS. A CFD model was developed to analyze heat exchange in the RCCS. The model incorporates a 180-deg section resembling the VHTR RCCSmore » experimentally reproduced in a laboratory-scale test facility at Texas A&M University. All the key features of the experimental facility were taken into account during the numerical simulations. The objective of the present work was to benchmark CFD tools against experimental data addressing the behavior of the RCCS following accident conditions. Two cooling fluids (i.e., water and air) were considered to test the capability of maintaining the RCCS concrete walls' temperature below design limits. Different temperature profiles at the reactor pressure vessel (RPV) wall obtained from the experimental facility were used as boundary conditions in the numerical analyses to simulate VHTR transient evolution during accident scenarios. Mesh convergence was achieved with an intensive parametric study of the two different cooling configurations and selected boundary conditions. To test the effect of turbulence modeling on the RCCS heat exchange, predictions using several different turbulence models and near-wall treatments were evaluated and compared. The comparison among the different turbulence models analyzed showed satisfactory agreement for the temperature distribution inside the RCCS cavity medium and at the standpipes walls. For such a complicated geometry and flow conditions, the tested turbulence models demonstrated that the realizable k-epsilon model with two-layer all y+ wall treatment performs better than the other k-epsilon and k-omega turbulence models when compared to the experimental results and the Reynolds stress transport turbulence model results. A scaling analysis was developed to address the distortions introduced by the CFD model in simulating the physical phenomena inside the RCCS system with respect to the full plant configuration. The scaling analysis demonstrated that both the experimental facility and the CFD model achieve a satisfactory resemblance of the main flow characteristics inside the RCCS cavity region, and convection and radiation heat exchange phenomena are properly scaled from the actual plant.« less
  • Constant-volume quantum molecular dynamics (QMD) simulations of uranium (U) have been carried out over a range of pressures and temperatures that span the experimentally observed solid orthorhombic {alpha}-U, body-centered cubic (bcc), and liquid phases, using an ab initio plane-wave pseudopotential method within the generalized gradient approximation of density functional theory. A robust U pseudopotential has been constructed for these simulations that treats the 14 valence and outer-core electrons per atom necessary to calculate accurate structural and thermodynamic properties up to 100 GPa. Its validity has been checked by comparing low-temperature results with experimental data and all-electron full-potential linear-muffin-tin-orbital calculations ofmore » several different uranium solid structures. Calculated QMD energies and pressures for the equation of state of uranium in the solid and liquid phases are given, along with results for the Grueneisen parameter and the specific heat. We also present results for the radial distribution function, bond-angle distribution function, electronic density of states, and liquid diffusion coefficient, as well as evidence for short-range order in the liquid.« less