skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of Enriched Borated Aluminum Alloy for Basket Material of Cask for Spent Nuclear Fuel

Conference ·
OSTI ID:21064616
; ; ;  [1]
  1. Ishikawajima-Harima Heavy Industries Company Ltd., 1 Shin-Nakaharacho, Isogoku, Yokohama 235-8501 (Japan)

Concrete cask system is focused as the candidate one for spent fuel dry storage facilities from economic potential in Japan. Concrete cask consists of a concrete storage cask and a steel canister. A canister containing nuclear spent fuel is shipped by a transportation cask from a nuclear power plant to an interim storage facility. The canister is transferred from the transportation cask to a storage cask by a transfer cask in the storage facility. IHI has developed a concrete cask horizontal transfer system. This transfer system indicates that a canister is transferred to a storage cask horizontally. This transfer system has a merit against canister drop accident in transfer operation, i.e. spent fuel assemblies can be kept safe during the transfer operation. There are guide rails inside of the concrete cask, and the canister is installed into the storage cask with sliding on the rails. To develop the horizontal transfer system, IHI carried out a heat load test and numerical analyses by CFD. Heat load experiment was carried out by using a full-scale prototype canister, storage cask and transfer vessel. The decay heat was simulated by an electric heater installed in the canister. Assuming high burn-up spent fuel storage, heat generation was set between 20.0 kW and 25.0 kW. This experiment was focused on the concrete temperature distribution. We confirmed that the maximum concrete temperature in transfer operation period was lower than 40 deg. C (Heat generation 22.5 kW). Moreover we confirmed the maximum concrete temperature passed 24 hours with horizontal orientation was below 90 deg. C (Heat generation 22.5 kW). We analyzed the thermal performance of the concrete cask with horizontal transfer condition and normal storage condition. Thermal analyses for horizontal transfer operation were carried out based on the experimental conditions. The tendency of the analytical results was in good agreement with experimental results. The purpose of vertical thermal analysis was to estimate the concrete temperature increase in the case a canister contacts with guide rails in normal storage. It has a possibility that a canister contacts with guide rails during storage period after concrete cask is upended from transfer operation. The temperature increase due to this contact was calculated 5 deg. C at small local area. This result implies that the affect of the contact is very small. This paper addresses that the storage cask concrete is kept its integrity in transfer operation period and normal storage period. (authors)

Research Organization:
The ASME Foundation, Inc., Three Park Avenue, New York, NY 10016-5990 (United States)
OSTI ID:
21064616
Resource Relation:
Conference: ICONE-10: 10. international conference on nuclear engineering, Arlington - Virginia (United States), 14-18 Apr 2002; Other Information: Country of input: France
Country of Publication:
United States
Language:
English