skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Carbon Beam Radio-Therapy and Research Activities at HIMAC

Abstract

Radio-therapy with carbon ion beam has been carried out since 1994 at HIMAC (Heavy Ion Medical Accelerator in Chiba) in NIRS (National Institute of Radiological Sciences). Now, many types of tumors can be treated with carbon beam with excellent local controls of the tumors. Stimulated with good clinical results, requirement of the dedicated compact facility for carbon beam radio-therapy is increased. To realize this requirement, design study of the facility and the R and D's of the key components in this design are promoted by NIRS. According successful results of these activities, the dedicated compact facility will be realized in Gunma University. In this facility, the established irradiation method is expected to use, which is passive irradiation method with wobbler magnets and ridge filter. In this presentation, above R and D's will be presented together with clinical results and basic research activities at HIMAC.

Authors:
 [1]
  1. NIRS, Anagawa4-9-1, Inage-ku, Chiba, 263-8335 (Japan)
Publication Date:
OSTI Identifier:
21061835
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 912; Journal Issue: 1; Conference: International symposium on exotic nuclei, Khanty-Mansiysk (Russian Federation), 17-22 Jul 2006; Other Information: DOI: 10.1063/1.2746626; (c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; ACCELERATORS; BEAM FOCUSING MAGNETS; CARBON 12 BEAMS; CONTROL; DESIGN; EDUCATIONAL FACILITIES; FILTERS; HEAVY IONS; IRRADIATION; JAPANESE ORGANIZATIONS; NEOPLASMS; RADIOTHERAPY

Citation Formats

Kanazawa, Mitsutaka. Carbon Beam Radio-Therapy and Research Activities at HIMAC. United States: N. p., 2007. Web. doi:10.1063/1.2746626.
Kanazawa, Mitsutaka. Carbon Beam Radio-Therapy and Research Activities at HIMAC. United States. doi:10.1063/1.2746626.
Kanazawa, Mitsutaka. Tue . "Carbon Beam Radio-Therapy and Research Activities at HIMAC". United States. doi:10.1063/1.2746626.
@article{osti_21061835,
title = {Carbon Beam Radio-Therapy and Research Activities at HIMAC},
author = {Kanazawa, Mitsutaka},
abstractNote = {Radio-therapy with carbon ion beam has been carried out since 1994 at HIMAC (Heavy Ion Medical Accelerator in Chiba) in NIRS (National Institute of Radiological Sciences). Now, many types of tumors can be treated with carbon beam with excellent local controls of the tumors. Stimulated with good clinical results, requirement of the dedicated compact facility for carbon beam radio-therapy is increased. To realize this requirement, design study of the facility and the R and D's of the key components in this design are promoted by NIRS. According successful results of these activities, the dedicated compact facility will be realized in Gunma University. In this facility, the established irradiation method is expected to use, which is passive irradiation method with wobbler magnets and ridge filter. In this presentation, above R and D's will be presented together with clinical results and basic research activities at HIMAC.},
doi = {10.1063/1.2746626},
journal = {AIP Conference Proceedings},
number = 1,
volume = 912,
place = {United States},
year = {Tue May 22 00:00:00 EDT 2007},
month = {Tue May 22 00:00:00 EDT 2007}
}
  • Purpose: A retrospective analysis was made to examine appropriateness in the estimation of the biologic effectiveness of carbon-ion radiotherapy using resultant data from clinical trials at the heavy-ion medical accelerator complex (HIMAC) at the National Institute of Radiological Sciences in Chiba, Japan. Methods and Materials: At HIMAC, relative biologic effectiveness (RBE) values of therapeutic carbon beams were determined based on experimental results of cell responses, on values expected with the linear-quadratic model, and based on experiences with neutron therapy. We use fixed RBE values independent of dose levels, although this apparently contradicts radiobiologic observations. Our RBE system depends only onmore » LET of the heavy-ion radiation fields. With this RBE system, over 2,000 patients have been treated by carbon beams. With data from these patients, the local control rate of non-small-cell lung cancer was analyzed to verify the clinical RBE of the carbon beam. The local control rate was compared with rates published by groups from Gunma University and Massachusetts General Hospital. Using a simplified tumor control probability (TCP) model, clinical RBE values were obtained for different levels of TCP. Results: For the 50% level of the clinical TCP, the RBE values nearly coincide with those for in vitro human salivary gland cell survival at 10%. For the higher levels of clinical TCP, the RBE values approach closer to those adapted in clinical trials at HIMAC.« less
  • Purpose: A method was developed to convert clinically prescribed RBE (Relative Biological Effectiveness)-weighted doses from the approach used at the Heavy-Ion Medical Accelerator (HIMAC) at the National Institute of Radiological Science, Chiba, Japan, to the LEM (Local Effect Model)-based TReatment planning for Particles (TRiP98) approach used in the pilot project at the GSI Helmholtzzentrum, Darmstadt, and the Heidelberg Ion-Beam Therapy Center (HIT). Methods and Materials: The proposed conversion method is based on a simulation of the fixed spread-out Bragg peak (SOBP) depth dose profiles as used for the irradiation at HIMAC by LEM/TRiP98 and a recalculation of the resulting RBE-weightedmore » dose distribution. We present data according to the clinical studies conducted at GSI in the past decade (LEM I), as well as data used in current studies (refined LEM version: LEM IV). Results: We found conversion factors (RBE-weighted dose LEM/RBE-weighted dose HIMAC) reaching from 0.4 to 2.0 for prescribed carbon ion doses from 1 to 60 Gy (RBE) for SOBP extensions ranging from 20 to 120 mm according to the HIMAC approach. A conversion factor of 1.0 was found for approximately 5 Gy (RBE). The conversion factor decreases with increasing prescribed dose. Slightly smaller values for the LEM IV-based data set compared with LEM I were found. A significant dependence of the conversion factor from the SOBP width could be observed in particular for LEM IV, whereas the depth dependence was found to be small. Conclusions: For the interpretation and comparison of clinical trials performed at HIMAC and GSI/HIT, it is of extreme importance to consider these conversion factors because according to the various methods to determine the RBE-weighted dose, similar dose values might not necessarily be related to similar clinical outcomes.« less
  • Microdosimetric single event spectra were determined as a function of depth in an acrylic phantom for the carbon beam at HIMAC using a tissue equivalent proportional counter (TEPC) coupled to a scintillation counter system. The fragments produced by the carbon beam were identified by the {delta}E-time of flight distribution obtained from two scintillation counters which were positioned at the up- and down-stream of the TEPC. Lineal energy distribution for the carbon beam and its five fragments, namely, proton, helium, lithium, beryllium, and boron ions, were measured in the lineal-energy range of 5-1000 keV/{mu}m at five phantom depths between 0 andmore » 230 mm. The dose distribution for the carbon beam and its fragments were obtained separately. The relative biological effectiveness (RBE) of the carbon beam in the phantom was calculated using a response function. The maximum RBE for the carbon beam was found to be about 5 near the Bragg peak. It was observed to rapidly decrease for Bragg peaks occurring at deeper positions in the phantom. The dose from the beam fragments accounted for about 30% to the total dose, however, its contribution to the RBE was less than 17%.« less
  • Purpose: To evaluate a patient-specific QA program and system for constancy checking of a scanning delivery system developed at the National Institute of Radiological Sciences.Methods: For the patient-specific QA, all the planned beams are recalculated on a water phantom with treatment planning software (TPS). The recalculated dose distributions are compared with the measured distributions using a 2D ionization chamber array at several depths, and evaluated using gamma index analysis with criteria of 3% and 3 mm and a pass rate of 90%. For the constancy check, the authors developed the multiwire proportional chamber (MWPC), which can record the delivered 2Dmore » fluence images in a slice-by-slice manner. During irradiation for dosimetric QA with the 2D ionization chamber array and an accordion-type water phantom, the 2D fluence images are recorded using the MWPC in the delivery system. These recorded images are then compared to those taken in the treatment session to check the constancy check. This analysis also employs gamma index analysis using the same criteria as in the patient-specific QA. These patient-specific QA and constancy check evaluations were performed using the data of 122 patients.Results: In the patient-specific QA, the measured dose distributions agreed well with those calculated by the TPS, and the QA criteria were satisfied in all measurements. The additional check of the fluence comparison ensured the constancy of the delivered field during each treatment irradiation.Conclusions: The authors established a patient-specific QA program and additional check of delivery constancy in every treatment session. Fluence comparison is a strong tool for constancy checking of the delivery system.« less
  • European effort on charge breeders is mainly dedicated to present and future Radioactive Ion Beam facilities. The main projects are High Intensity and Energy-ISOLDE at CERN, SPIRAL2 at GANIL, and EURISOL. Most of the experimental developments are funded by the European programs EURONS (European Nuclear Structure) and EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility). Two ion source types (electron beam ion source and electron cyclotron resonance ion source) have been adapted to accept the injection and the capture of an ion beam, in order to increase its charge with the highest efficiency within the shortest time. Both chargemore » breeders have advantages and disadvantages with regard to their use in a Radioactive Ion Beam facility. The most important parameters studied are acceptance (in emittance and intensity) of the charge breeder, efficiency, and charge breeding time of a specific n+ charge state, emittance of the extracted n+ beam. The charge breeder parameters are studied with different 1+ ion sources dedicated to 1+ radioactive ion beam production, and the tuning procedure of the charge breeder as a beam line section of a specific accelerator is established and measured too.« less