skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of Forming Performance of Laminated Steel Sheets Using Finite Element Analyses

Abstract

Laminated steel sheets have been used in automotive structures for reducing in-cabin noise. However, due to the marked difference in material properties of the different laminated layers, integrating laminated steel parts into the manufacturing processes can be challenging. Especially, the behavior of laminated sheets during forming processes is very different from that of monolithic steel sheets. During the deep-draw forming process, large shear deformation and corresponding high interfacial stress may initiate and propagate interfacial cracks between the core polymer and the metal skin, hence degrading the performance of the laminated sheets. In this paper, the formability of the laminated steel sheets is investigated by means of numerical analysis. The goal of this work is to gain insight into the relationship between the individual properties of the laminated sheet layers and the corresponding formability of the laminated sheet as a whole, eventually leading to reliable design and successful forming process development of such materials. Finite element analyses of laminate sheet forming are presented. Effects of polymer core thickness and viscoelastic properties of the polymer core, as well as punching velocity, are also investigated.

Authors:
;  [1]; ;  [2]
  1. Pacific Northwest National Laboratory, P.O. Box 999, K6-08, Richland, WA 99352 (United States)
  2. General Motors R and D Center, 30500 Mound Rd, Warren, MI 48090-9055 (United States)
Publication Date:
OSTI Identifier:
21061773
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 908; Journal Issue: 1; Conference: NUMIFORM 2007: 9. international conference on numerical methods in industrial forming processes, Porto (Portugal), 17-21 Jun 2007; Other Information: DOI: 10.1063/1.2740924; (c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CRACKS; DEFORMATION; DESIGN; DRAWING; FINITE ELEMENT METHOD; GAIN; LAYERS; MANUFACTURING; METALS; NUMERICAL ANALYSIS; PERFORMANCE; POLYMERS; SHEAR; SHEETS; STEELS; STRESSES

Citation Formats

Liu Wenning, Sun Xin, Ruokolainen, Robert, and Gayden Xiaohong. Investigation of Forming Performance of Laminated Steel Sheets Using Finite Element Analyses. United States: N. p., 2007. Web. doi:10.1063/1.2740924.
Liu Wenning, Sun Xin, Ruokolainen, Robert, & Gayden Xiaohong. Investigation of Forming Performance of Laminated Steel Sheets Using Finite Element Analyses. United States. doi:10.1063/1.2740924.
Liu Wenning, Sun Xin, Ruokolainen, Robert, and Gayden Xiaohong. Thu . "Investigation of Forming Performance of Laminated Steel Sheets Using Finite Element Analyses". United States. doi:10.1063/1.2740924.
@article{osti_21061773,
title = {Investigation of Forming Performance of Laminated Steel Sheets Using Finite Element Analyses},
author = {Liu Wenning and Sun Xin and Ruokolainen, Robert and Gayden Xiaohong},
abstractNote = {Laminated steel sheets have been used in automotive structures for reducing in-cabin noise. However, due to the marked difference in material properties of the different laminated layers, integrating laminated steel parts into the manufacturing processes can be challenging. Especially, the behavior of laminated sheets during forming processes is very different from that of monolithic steel sheets. During the deep-draw forming process, large shear deformation and corresponding high interfacial stress may initiate and propagate interfacial cracks between the core polymer and the metal skin, hence degrading the performance of the laminated sheets. In this paper, the formability of the laminated steel sheets is investigated by means of numerical analysis. The goal of this work is to gain insight into the relationship between the individual properties of the laminated sheet layers and the corresponding formability of the laminated sheet as a whole, eventually leading to reliable design and successful forming process development of such materials. Finite element analyses of laminate sheet forming are presented. Effects of polymer core thickness and viscoelastic properties of the polymer core, as well as punching velocity, are also investigated.},
doi = {10.1063/1.2740924},
journal = {AIP Conference Proceedings},
number = 1,
volume = 908,
place = {United States},
year = {Thu May 17 00:00:00 EDT 2007},
month = {Thu May 17 00:00:00 EDT 2007}
}
  • Laminated steel sheets have been used in automotive structures for reducing in-cabin noise. However, due to the marked difference in material properties of the different laminated layers, integrating laminated steel parts into the manufacturing processes can be challenging. Especially, the behavior of laminated sheets during forming processes is very different from that of monolithic steel sheets. During the deep-draw forming process, large shear deformation and corresponding high interfacial stress may initiate and propagate interfacial cracks between the core polymer and the metal skin, hence degrading the performance of the laminated sheets. In this paper, the formability of the laminated steelmore » sheets is investigated by means of numerical analysis. The goal of this work is to gain insight into the relationship between the individual properties of the laminated sheet layers and the corresponding formability of the laminated sheet as a whole, eventually leading to reliable design and successful forming process development of such materials. Finite element analyses of laminate sheet forming are presented. Effects of polymer core thickness and viscoelastic properties of the polymer core, as well as punching velocity, are also investigated.« less
  • Recently, the homogenization method has been proposed to predict the macroscopic material properties and characteristics of deformation by considering periodicity of poly crystal microstructure (Terada et al., 1996; Miehe, 1999,2002).We have developed the dynamic explicit finite element (FE) analysis code by using a crystallographic homogenization method. This multi-scale analysis can couple the microscopic crystal plasticity inhomogeneous deformation with the macroscopic continuum deformation. In this homogenization process, the stress at the macro scale is defined by the volume average of those of the corresponding microscopic crystal aggregations in satisfying the equation of motion and compatibility condition in the micro scale ''unit-cell,''more » where the periodicity of deformation is satisfied. And this FEM has shown more reasonable prediction of plastic deformation for simulating the polycrystalline materials (Nakamachi et al. 2004).In this study, we try to determine the unit-cell of AL6022-T43 by using the EBSD measurement. The dynamic explicit crystallographic homogenization finite element analysis code was applied to simulate the limiting dome height test (LDH). The localized distribution of thickness strain and the texture evolution are obtained, and the effect of the numbers of the element in microstructure is found out.« less
  • Since the multi-scale finite element analysis (FEA) requires large computation time, development of the parallel computing technique for the multi-scale analysis is inevitable. A parallel elastic/crystalline viscoplastic FEA code based on a crystallographic homogenization method has been developed using PC cluster. The homogenization scheme is introduced to compute macro-continuum plastic deformations and material properties by considering a polycrystal texture. Since the dynamic explicit method is applied to this method, the analysis using micro crystal structures computes the homogenized stresses in parallel based on domain partitioning of macro-continuum without solving simultaneous linear equations. The micro-structure is defined by the Scanning Electronmore » Microscope (SEM) and the Electron Back Scan Diffraction (EBSD) measurement based crystal orientations. In order to improve parallel performance of elastoplasticity analysis, which dynamically and partially increases computational costs during the analysis, a dynamic workload balancing technique is introduced to the parallel analysis. The technique, which is an automatic task distribution method, is realized by adaptation of subdomain size for macro-continuum to maintain the computational load balancing among cluster nodes. The analysis code is applied to estimate the polycrystalline sheet metal formability.« less
  • Various high tensile strength steel sheets and an aluminum alloy sheet were joined with a self-piercing rivet. It is not easy to weld the aluminum alloy sheet and high tensile strength sheets by means of conventional resistance welding because of very different melting points. To obtain optimum joining conditions, joining defects were categorized into separation of the sheets and an inner fracture. The joining range of ultra high tensile strength steel and aluminum alloy sheets was extended by means of dies optimized by finite element simulation. The joint strength is greatly influenced by not only the strength of the sheetsmore » and rivets but also the ratio of the thickness of the lower sheet to the total thickness. In addition, mechanical clinching of high strength steel and aluminum alloy sheets was simulated.« less
  • The paper analyzes the dispersion of the mechanical parameters and its influence on the forming limit curves of sheet metals. The tests have been made for the case of the DC01 steel sheets. The dispersion of the mechanical parameters has been observed during the experimental research. On the basis of this dispersion, a forming limit band has been calculated using an alternate formulation of Hora's model (MMFC).