skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Status of Turkish Accelerator Center Test Facility

Abstract

Recently, conceptual design of Turkic Accelerator Center (TAC) proposal was completed. Main goal of this proposal is a charm factory that consists of a linac-ring type electron-positron collider. In addition, synchrotron radiation from the positron ring and free electron laser from the electron linac are proposed. The project related with this proposal has been accepted by Turkish government. It is planned that the Technical Design Report of TAC will have been written in next three years. In this period, an infrared oscillator free electron laser (IR FEL) will be constructed as a test facility for TAC. 20 and 50 MeV electron energies will be used to obtain infra red free electron laser. The main parameters of the electron linac, the optical cavities and the free electron laser were determined. The possible use of obtained laser beam in basic and applied research areas such as biotechnology, nanotechnology, semiconductors and photo chemistry were stated.

Authors:
 [1]
  1. University of Ankara, Fac. of Engineering, Dept. of Engineering Physics, Tandogan 06100, Ankara (Turkey)
Publication Date:
OSTI Identifier:
21057132
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 899; Journal Issue: 1; Conference: 6. international conference of the Balkan Physical Union, Istanbul (Turkey), 22-26 Aug 2006; Other Information: DOI: 10.1063/1.2733112; (c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA). TAC Collaboration
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; ACCELERATOR FACILITIES; BEAM PRODUCTION; CHARM PARTICLES; ELECTRON-POSITRON INTERACTIONS; ELECTRONS; FREE ELECTRON LASERS; LINEAR COLLIDERS; MEV RANGE; OSCILLATORS; POSITRONS; SEMICONDUCTOR MATERIALS; SYNCHROTRON RADIATION; TEST FACILITIES; TURKISH ORGANIZATIONS

Citation Formats

Yavas, Oe. The Status of Turkish Accelerator Center Test Facility. United States: N. p., 2007. Web. doi:10.1063/1.2733112.
Yavas, Oe. The Status of Turkish Accelerator Center Test Facility. United States. doi:10.1063/1.2733112.
Yavas, Oe. Mon . "The Status of Turkish Accelerator Center Test Facility". United States. doi:10.1063/1.2733112.
@article{osti_21057132,
title = {The Status of Turkish Accelerator Center Test Facility},
author = {Yavas, Oe.},
abstractNote = {Recently, conceptual design of Turkic Accelerator Center (TAC) proposal was completed. Main goal of this proposal is a charm factory that consists of a linac-ring type electron-positron collider. In addition, synchrotron radiation from the positron ring and free electron laser from the electron linac are proposed. The project related with this proposal has been accepted by Turkish government. It is planned that the Technical Design Report of TAC will have been written in next three years. In this period, an infrared oscillator free electron laser (IR FEL) will be constructed as a test facility for TAC. 20 and 50 MeV electron energies will be used to obtain infra red free electron laser. The main parameters of the electron linac, the optical cavities and the free electron laser were determined. The possible use of obtained laser beam in basic and applied research areas such as biotechnology, nanotechnology, semiconductors and photo chemistry were stated.},
doi = {10.1063/1.2733112},
journal = {AIP Conference Proceedings},
number = 1,
volume = 899,
place = {United States},
year = {Mon Apr 23 00:00:00 EDT 2007},
month = {Mon Apr 23 00:00:00 EDT 2007}
}
  • The Turkish Accelerator Center (TAC) Project was started in 1997 with support of the State Planning Organization (SPO) of Turkey under Ankara University's coordination. After completing Feasibility Report (FR, 2000) and Conceptual Design Repot (CDR, 2005), third phase of the project was started in 2006 as an inter-university project with support of SPO. Third phase of the project has two main scientific goals: to write Technical Design Report (TDR) of TAC and to establish an Infrared Free Electron Laser (IR FEL) facility as a first step. The first facility and TDR studies are planned to be completed in 2012. Constructionmore » phase of TAC will cover 2013-2023. TAC collaboration include ten Turkish Universities: Ankara, Gazi, Istanbul, Bogazici, Dogus, Uludag, Dumlupmar, Nigde, Erciyes and S. Demirel Universities. It was planned that the first facility will be an IR FEL and Bremsstrahlung laboratory based on 15-40 MeV electron linac and two optical cavities with 2.5 and 9 cm undulators to scan 2-250 microns wavelength range. Main purpose of the facility is to use IR FEL for research in material science, nonlinear optics, semiconductors, biotechnology, medicine and photochemical processes. In this study; aims, regional importance, main parts and main parameters of TAC and TAC IR FEL and Bremsstrahlung facility are explained. Road map of the TAC project is given. National and international collaborations are explained.« less
  • The required simulations of the electron beam interactions for the design of electron beam dump unit for an accelerator which will operate to get two Infra-Red Free Electron Lasers (IR-FEL) covering the range of 3-250 microns is presented in this work. Simulations have been carried out to understand the interactions of a bulk of specially shaped of four different and widely used materials for the dump materials for a 77 pC, 40 MeV, 13 MHz repetition rate e-beam. In the simulation studies dump materials are chosen to absorb the 99% of the beam energy and to restrict the radio-isotope production in themore » bulk of the dump. A Lead shielding also designed around the dump core to prevent the leakage out of the all the emitted secondary radiations, e.g., neutrons, photons. The necessary dump material requirements, for the overall design considerations and the possible radiation originated effects on the dump unit, are discussed and presented.« less
  • ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.
  • The Stanford Linear Accelerator Center (SLAC) operates a high-energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the radio-frequency power for the accelerator. Hence, a pulsed x-ray facility has been built at SLAC mainly for testing the response of different radiation detection instruments to pulsed radiation fields. The x-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that canmore » be accelerated towards a confined target window. The window consists of Al 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of Au 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 microseconds. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The maximum absorbed dose rate obtained at 6.35 cm below the target window as measured by an ionization chamber is 258 Gy/h. The major part of the x-ray tube is enclosed in a large walk-in cabinet made of 1.9-cm-thick (3/4-inch-thick) plywood and lined with 0.32-cm-thick (1/8-inch-thick) Pb to make a very versatile facility.« less