skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Role of Molecules in Low Temperature Plasmas for Lighting

Abstract

High intensity discharge (HID) lamps are low temperature ({approx}0.5eV), weakly ionized plasmas sustained in a refractory but light transmissive envelope for the purpose of converting electrical power into visible radiation. For commercial applications this conversion must occur with good efficiency and with sufficient spectral content throughout the visible (380-780nm) to permit the light so generated to render colors in a fashion comparable to natural sunlight. These goals are often achieved by adding multiple metals to a basic mercury discharge. Because the vapor pressure of most metals is very much lower than mercury itself, chemical compounds containing the desired metals, and having higher vapor pressures are used to introduce the material into the basic discharge. Complexing agents which further improve the vapor pressure are used to enhance the amount of metals in the discharge. The metal compound and complexes are usually polyatomic species which vaporize and subsequently dissociate as they diffuse into the bulk plasma. Under the approximation of local thermodynamic equilibrium (LTE) the particles are in equilibrium, but not with the radiation Held. Strong thermal (106K/m) and density gradients are sustained in the discharge. Atomic and molecular radiation produced in the high temperature core transits through colder gas regions beforemore » exiting the lamp. In these regions where the complex molecular species exists in an undissociated state, bound-free transitions can result in energy being effectively converted from light radiation into heat in the mantle. Bound-bound transitions In Identifiable molecules can result in modification of the spectral output in unpredictable and counter-intuitive ways. Examples of completing agents and their effect on the spectral output of typical rare-earth containing HID lamps will be given. The melt composition and the complexing agents themselves may change with time, as chemical reactions in the lamp occur, and their benefit is accordingly altered. Optical absorption and emission data, molecular structure and electron Impact and attachment cross section data on these molecular components is sparse but necessary to understand lamp performance in the lamps re-ignition phase and during steady state operation. More data are needed.« less

Authors:
 [1]
  1. OSRAM SYLVANIA, Beverly, MA 01915 (United States)
Publication Date:
OSTI Identifier:
21056929
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 901; Journal Issue: 1; Conference: ICAMDATA: 5. international conference on atomic and molecular data and their applications, Meudon (France), 15-19 Oct 2006; Other Information: DOI: 10.1063/1.2727357; (c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ABSORPTION; APPROXIMATIONS; CHELATING AGENTS; CROSS SECTIONS; ELECTRIC DISCHARGES; ELECTRON COLLISIONS; ELECTRON TEMPERATURE; ELECTRONS; ENERGY-LEVEL TRANSITIONS; ION COLLISIONS; ION TEMPERATURE; LIGHT BULBS; LTE; MERCURY; MOLECULAR STRUCTURE; MOLECULES; PLASMA; PLASMA HEATING; STEADY-STATE CONDITIONS; VAPOR PRESSURE

Citation Formats

Lapatovich, Walter P. The Role of Molecules in Low Temperature Plasmas for Lighting. United States: N. p., 2007. Web. doi:10.1063/1.2727357.
Lapatovich, Walter P. The Role of Molecules in Low Temperature Plasmas for Lighting. United States. doi:10.1063/1.2727357.
Lapatovich, Walter P. Fri . "The Role of Molecules in Low Temperature Plasmas for Lighting". United States. doi:10.1063/1.2727357.
@article{osti_21056929,
title = {The Role of Molecules in Low Temperature Plasmas for Lighting},
author = {Lapatovich, Walter P.},
abstractNote = {High intensity discharge (HID) lamps are low temperature ({approx}0.5eV), weakly ionized plasmas sustained in a refractory but light transmissive envelope for the purpose of converting electrical power into visible radiation. For commercial applications this conversion must occur with good efficiency and with sufficient spectral content throughout the visible (380-780nm) to permit the light so generated to render colors in a fashion comparable to natural sunlight. These goals are often achieved by adding multiple metals to a basic mercury discharge. Because the vapor pressure of most metals is very much lower than mercury itself, chemical compounds containing the desired metals, and having higher vapor pressures are used to introduce the material into the basic discharge. Complexing agents which further improve the vapor pressure are used to enhance the amount of metals in the discharge. The metal compound and complexes are usually polyatomic species which vaporize and subsequently dissociate as they diffuse into the bulk plasma. Under the approximation of local thermodynamic equilibrium (LTE) the particles are in equilibrium, but not with the radiation Held. Strong thermal (106K/m) and density gradients are sustained in the discharge. Atomic and molecular radiation produced in the high temperature core transits through colder gas regions before exiting the lamp. In these regions where the complex molecular species exists in an undissociated state, bound-free transitions can result in energy being effectively converted from light radiation into heat in the mantle. Bound-bound transitions In Identifiable molecules can result in modification of the spectral output in unpredictable and counter-intuitive ways. Examples of completing agents and their effect on the spectral output of typical rare-earth containing HID lamps will be given. The melt composition and the complexing agents themselves may change with time, as chemical reactions in the lamp occur, and their benefit is accordingly altered. Optical absorption and emission data, molecular structure and electron Impact and attachment cross section data on these molecular components is sparse but necessary to understand lamp performance in the lamps re-ignition phase and during steady state operation. More data are needed.},
doi = {10.1063/1.2727357},
journal = {AIP Conference Proceedings},
number = 1,
volume = 901,
place = {United States},
year = {Fri Apr 06 00:00:00 EDT 2007},
month = {Fri Apr 06 00:00:00 EDT 2007}
}
  • The excitation mechanism of the H{sub 2} rotational temperature has been studied in a hollow-cathode glow discharge apparatus based on the measurements of relation between the rotational and cathode surface temperature. The rotational temperature evaluated by an excitation-emission model for the Fulcher-{alpha} transition indicates clear correlation with the surface temperature. Depending on the plasma parameters and neutral gas pressures, slight difference between both the temperatures is also observed. The temporal evolution of the rotational population densities predicted by rate equations suggests that the difference is attributable to an inequilibrium between the translational and surface temperature. Further possibility of an inequilibriummore » among the rotational, translational, and surface temperature is expected in low pressure or high electron density conditions.« less
  • We present a joint crossed molecular beam and kinetics investigation combined with electronic structure and statistical calculations on the reaction of the ground-state cyano radical, CN(X {sup 2}{Sigma}{sup +}), with the 1,3-butadiene molecule, H{sub 2}CCHCHCH{sub 2}(X {sup 1} A{sub g}), and its partially deuterated counterparts, H{sub 2}CCDCDCH{sub 2}(X {sup 1} A{sub g}) and D{sub 2}CCHCHCD{sub 2}(X {sup 1} A{sub g}). The crossed beam studies indicate that the reaction proceeds via a long-lived C{sub 5}H{sub 6}N complex, yielding C{sub 5}H{sub 5}N isomer(s) plus atomic hydrogen under single collision conditions as the nascent product(s). Experiments with the partially deuterated 1,3-butadienes indicate thatmore » the atomic hydrogen loss originates from one of the terminal carbon atoms of 1,3-butadiene. A combination of the experimental data with electronic structure calculations suggests that the thermodynamically less favorable 1-cyano-1,3-butadiene isomer represents the dominant reaction product; possible minor contributions of less than a few percent from the aromatic pyridine molecule might be feasible. Low-temperature kinetics studies demonstrate that the overall reaction is very fast from room temperature down to 23 K with rate coefficients close to the gas kinetic limit. This finding, combined with theoretical calculations, indicates that the reaction proceeds on an entrance barrier-less potential energy surface (PES). This combined experimental and theoretical approach represents an important step toward a systematic understanding of the formation of complex, nitrogen-bearing molecules-here on the C{sub 5}H{sub 6}N PES-in low-temperature extraterrestrial environments. These results are compared to the reaction dynamics of D1-ethynyl radicals (C{sub 2}D; X {sup 2}{Sigma}{sup +}) with 1,3-butadiene accessing the isoelectronic C{sub 6}H{sub 7} surface as tackled earlier in our laboratories.« less
  • The neutral gas temperature of fluorocarbon plasmas in a remote toroidal transformer-coupled source was measured to be greater than 5000 K, under the conditions of a power density greater than 15 W/cm{sup 3} and pressures above 2 torr. The rovibrational bands of C{sub 2} molecules (swan bands, d {sup 3}{pi}{sub g}{yields}a {sup 3}{pi}{sub u}) were fitted to obtain the rotational temperature that was assumed to equal the translational temperature. This rotational-translational temperature equilibrium assumption was supported by the comparison with the rotational temperature of second positive system of added N{sub 2}. For the same gas mixture, the neutral gas temperaturemore » is nearly a linear function of plasma power, since the conduction to chamber wall and convection are the major energy-loss processes, and they are both proportional to neutral gas temperature. The dependence of the neutral gas temperature on O{sub 2} flow rate and pressure can be well represented through the power dependence, under the condition of constant current operation. An Arrhenius type of dependence between the etching rate of oxide film and the neutral gas temperature is observed, maybe indicating the importance of the pyrolytic dissociation in the plasma formation process when the temperature is above 5000 K.« less
  • Transitions from turbulence to order are studied experimentally in thin fluid layers and in magnetically confined toroidal plasma. It is shown that turbulence self-organizes through the mechanism of spectral condensation in both systems. The spectral redistribution of the turbulent energy leads to the reduction in the turbulence level, generation of coherent flow, reduction in the particle diffusion, and increase in the system's energy. The higher-order state in the plasma is sustained via the nonlocal spectral coupling of the linearly unstable spectral range to the large-scale mean flow. Spectral condensation of turbulence is discussed in terms of its role in themore » low-to-high confinement transitions in toroidal plasma which show similarity with phase transitions.« less