skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Status and Background Considerations of XMASS Experiment

Abstract

The XMASS project utilizes ultrapure liquid xenon and aims to detect pp and 7Be solar neutrinos by means of {nu}e+ e scattering and also the WIMP dark matter particles. It requires ultra-low background, less than 10-5 count/(keV kg day). By using a 100 kg prototype detector, we have confirmed its feasibility to realize low background and low threshold. We have begun to design an 800 kg liquid xenon detector mainly for a WIMP search experiment. In this report, Monte-Carlo simulations about the expected background rates are described.

Authors:
 [1]
  1. Physics Department, Sejong University, Seoul, 143-747 (Korea, Republic of)
Publication Date:
OSTI Identifier:
21055032
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 897; Journal Issue: 1; Conference: LRT 2006: Topical workshop on low radioactivity techniques, Aussois (France), 1-4 Oct 2006; Other Information: DOI: 10.1063/1.2722072; (c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; BERYLLIUM 7; COMPUTERIZED SIMULATION; COSMIC NEUTRINOS; KEV RANGE; LIQUID SCINTILLATION DETECTORS; MONTE CARLO METHOD; NEUTRINO DETECTION; NEUTRINO REACTIONS; NEUTRINO-ELECTRON INTERACTIONS; NONLUMINOUS MATTER; PARTICLE IDENTIFICATION; SCATTERING; SOLAR NEUTRINOS; WEAK INTERACTIONS; XENON

Citation Formats

Kim, Y. D. The Status and Background Considerations of XMASS Experiment. United States: N. p., 2007. Web. doi:10.1063/1.2722072.
Kim, Y. D. The Status and Background Considerations of XMASS Experiment. United States. doi:10.1063/1.2722072.
Kim, Y. D. Wed . "The Status and Background Considerations of XMASS Experiment". United States. doi:10.1063/1.2722072.
@article{osti_21055032,
title = {The Status and Background Considerations of XMASS Experiment},
author = {Kim, Y. D.},
abstractNote = {The XMASS project utilizes ultrapure liquid xenon and aims to detect pp and 7Be solar neutrinos by means of {nu}e+ e scattering and also the WIMP dark matter particles. It requires ultra-low background, less than 10-5 count/(keV kg day). By using a 100 kg prototype detector, we have confirmed its feasibility to realize low background and low threshold. We have begun to design an 800 kg liquid xenon detector mainly for a WIMP search experiment. In this report, Monte-Carlo simulations about the expected background rates are described.},
doi = {10.1063/1.2722072},
journal = {AIP Conference Proceedings},
number = 1,
volume = 897,
place = {United States},
year = {Wed Mar 28 00:00:00 EDT 2007},
month = {Wed Mar 28 00:00:00 EDT 2007}
}
  • The Diffuse Infrared Background Experiment (DIRBE) on the Cosmic Background Explorer ({ital COBE}) spacecraft was designed primarily to conduct a systematic search for an isotropic cosmic infrared background (CIB) in 10 photometric bands from 1.25 to 240 {mu}m. The results of that search are presented here. Conservative limits on the CIB are obtained from the minimum observed brightness in all-sky maps at each wavelength, with the faintest limits in the DIRBE spectral range being at 3.5 {mu}m ({nu}{ital I}{sub {nu}} {lt} 64 nW m{sup {minus}2} sr{sup {minus}1}, 95{percent} confidence level) and at 240 {mu}m ({nu}{ital I}{sub {nu}} {lt} 28 nWmore » m{sup {minus}2} sr{sup {minus}1}, 95{percent} confidence level). The bright foregrounds from interplanetary dust scattering and emission, stars, and interstellar dust emission are the principal impediments to the DIRBE measurements of the CIB. These foregrounds have been modeled and removed from the sky maps. Assessment of the random and systematic uncertainties in the residuals and tests for isotropy show that only the 140 and 240 {mu}m data provide candidate detections of the CIB. The residuals and their uncertainties provide CIB upper limits more restrictive than the dark sky limits at wavelengths from 1.25 to 100 {mu}m. No plausible solar system or Galactic source of the observed 140 and 240 {mu}m residuals can be identified, leading to the conclusion that the CIB has been detected at levels of {nu}{ital I}{sub {nu}} = 25 {plus_minus} 7 and 14 {plus_minus} 3 nW m{sup {minus}2} sr{sup {minus}1} at 140 and 240 {mu}m, respectively. The integrated energy from 140 to 240 {mu}m, 10.3 nW m{sup {minus}2} sr{sup {minus}1}, is about twice the integrated optical light from the galaxies in the Hubble Deep Field, suggesting that star formation might have been heavily enshrouded by dust at high redshift. The detections and upper limits reported here provide new constraints on models of the history of energy-releasing processes and dust production since the decoupling of the cosmic microwave background from matter. {copyright} {ital {copyright} 1998.} {ital The American Astronomical Society}« less
  • The Diffuse Infrared Background Experiment (DIRBE) on the Cosmic Background Explorer (COBE) spacecraft was designed primarily to conduct a systematic search for an isotropic cosmic infrared background (CIB) in 10 photometric bands from 1.25 to 240 mu m. The results of that search are presented here. Conservative limits on the CIB are obtained from the minimum observed brightness in all-sky maps at each wavelength, with the faintest limits in the DIRBE spectral range being at 3.5 mu m(nu l nu<64 nW m-2 sr-1, 95 percent confidence level) and at 240 mu m (nu l nu < 28 nW m-1 sr-1,more » 95 percent confidence level). The bright foregrounds from interplanetary dust scattering and emission, stars, and interstellar dust emission are the principal impediments to the DIRBE measurements of the CIB. These foregrounds have been modeled and removed from the sky maps. Assessment of the random and systematic uncertainties in the residuals and tests for isotropy show that only the 140 and 240 mum data provide candidate detections of the CIB. The residuals and their uncertainties provide CIB upper limits more restrictive than the dark sky limits at wavelengths from 1.25 to 100 mu m. No plausible solar system or Galactic source of the observed 140 and 240 mu m residuals can be identified, leading to the conclusion that the CIB has been detected at levels of nu l nu = 25 +- 7 and 14 +- 3 nW m-2 sr-1 at 140 and 240 mu m, respectively. The integrated energy from 140 to 240 mu m, 10.3 nW m-2sr-1, is about twice the integrated optical light from the galaxies in the Hubble Deep Field, suggesting that star formation might have been heavily enshrouded by dust at high redshift. The detections and upper limits reported here provide new constraints on models of the history of energy-releasing processes and dust production since the decoupling of the cosmic microwave background from matter.« less
  • The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earth's atmosphere. The instrument package comprises two imaging telescopes designed to characterize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, andmore » electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBER's flight profile and configurations. CIBER is designed to be recoverable and has flown four times, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the subsequent flights, and the scientific data from these flights are currently being analyzed.« less