skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetic Carpet Probe for Large Area Instant Crack/Corrosion Detection and Health Monitoring

Abstract

Recently a new NDE tool, Magnet Carpet Probe (MCP), has been developed by Innovative Materials Testing Technologies, Inc. supported by FAA to meet the demands of large area crack/corrosion detection and health monitoring. MCP is a two-dimensional coil array built on a piece of very thin flexible printed circuit board. A two-dimensional electromagnetic scan is going on within the MCP placed on top of a metallic surface under inspection. Therefore, one can finish the inspection, without moving anything, and see the crack/corrosion identification image on the instrument screen in a few second. Recent test results show that it can detect 0.030 x 0.016'' EDM notches on a Titanium standard; 0.024'' {approx} 0.036: real cracks on titanium standards, as well as penetrate through a 0.040'' aluminum layer for corrosion detection.

Authors:
; ; ;  [1]
  1. Innovative Materials Testing Technologies, Inc., Superior, CO 80027 (United States)
Publication Date:
OSTI Identifier:
21054983
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 894; Journal Issue: 1; Conference: Conference on review of progress in quantitative nondestructive evaluation, Portland, OR (United States), 30 Jul - 4 Aug 2006; Other Information: DOI: 10.1063/1.2718067; (c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 36 MATERIALS SCIENCE; ALUMINIUM; CORROSION; CRACKS; DETECTION; ELECTROMAGNETS; IMAGES; LAYERS; MATERIALS TESTING; MONITORING; PRINTED CIRCUITS; PROBES; SENSORS; SURFACES; TITANIUM

Citation Formats

Sun Yushi, Ouyang Tianhe, Yang Xinle, and Zhu Haiou. Magnetic Carpet Probe for Large Area Instant Crack/Corrosion Detection and Health Monitoring. United States: N. p., 2007. Web. doi:10.1063/1.2718067.
Sun Yushi, Ouyang Tianhe, Yang Xinle, & Zhu Haiou. Magnetic Carpet Probe for Large Area Instant Crack/Corrosion Detection and Health Monitoring. United States. doi:10.1063/1.2718067.
Sun Yushi, Ouyang Tianhe, Yang Xinle, and Zhu Haiou. Wed . "Magnetic Carpet Probe for Large Area Instant Crack/Corrosion Detection and Health Monitoring". United States. doi:10.1063/1.2718067.
@article{osti_21054983,
title = {Magnetic Carpet Probe for Large Area Instant Crack/Corrosion Detection and Health Monitoring},
author = {Sun Yushi and Ouyang Tianhe and Yang Xinle and Zhu Haiou},
abstractNote = {Recently a new NDE tool, Magnet Carpet Probe (MCP), has been developed by Innovative Materials Testing Technologies, Inc. supported by FAA to meet the demands of large area crack/corrosion detection and health monitoring. MCP is a two-dimensional coil array built on a piece of very thin flexible printed circuit board. A two-dimensional electromagnetic scan is going on within the MCP placed on top of a metallic surface under inspection. Therefore, one can finish the inspection, without moving anything, and see the crack/corrosion identification image on the instrument screen in a few second. Recent test results show that it can detect 0.030 x 0.016'' EDM notches on a Titanium standard; 0.024'' {approx} 0.036: real cracks on titanium standards, as well as penetrate through a 0.040'' aluminum layer for corrosion detection.},
doi = {10.1063/1.2718067},
journal = {AIP Conference Proceedings},
number = 1,
volume = 894,
place = {United States},
year = {Wed Mar 21 00:00:00 EDT 2007},
month = {Wed Mar 21 00:00:00 EDT 2007}
}
  • Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN).more » Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.« less
    Cited by 1
  • The physical processes that heat the solar corona and accelerate the solar wind remain unknown after many years of study. Some have suggested that the wind is driven by waves and turbulence in open magnetic flux tubes, and others have suggested that plasma is injected into the open tubes by magnetic reconnection with closed loops. In order to test the latter idea, we developed Monte Carlo simulations of the photospheric 'magnetic carpet' and extrapolated the time-varying coronal field. These models were constructed for a range of different magnetic flux imbalance ratios. Completely balanced models represent quiet regions on the Sunmore » and source regions of slow solar wind streams. Highly imbalanced models represent coronal holes and source regions of fast wind streams. The models agree with observed emergence rates, surface flux densities, and number distributions of magnetic elements. Despite having no imposed supergranular motions in the models, a realistic network of magnetic 'funnels' appeared spontaneously. We computed the rate at which closed field lines open up (i.e., recycling times for open flux), and we estimated the energy flux released in reconnection events involving the opening up of closed flux tubes. For quiet regions and mixed-polarity coronal holes, these energy fluxes were found to be much lower than that which is required to accelerate the solar wind. For the most imbalanced coronal holes, the energy fluxes may be large enough to power the solar wind, but the recycling times are far longer than the time it takes the solar wind to accelerate into the low corona. Thus, it is unlikely that either the slow or fast solar wind is driven by reconnection and loop-opening processes in the magnetic carpet.« less
  • On-line acoustic emissions (AE) monitoring of a feed nozzle on a heat cracking tower and butt weld seams between the piping and flanges in the high pressure reforming process of an ammonia plant was conducted with a two-channel waveform recorder and an AE analyzer. To avoid degradation of the PZT sensors from high temperature, two sensors were separately attached to the cold top-surfaces of two wave guides through which the feed nozzle and the butt weld seam were monitored for cracking and leaking under operating conditions. Inspection and X-ray examination, after shut down, proved that on-line AE monitoring was effective.
  • No abstract prepared.
  • The solar wind is connected to the Sun's atmosphere by flux tubes that are rooted in an ever-changing pattern of positive and negative magnetic polarities on the surface. Observations indicate that the magnetic field is filamentary and intermittent across a wide range of spatial scales. However, we do not know to what extent the complex flux-tube topology seen near the Sun survives as the wind expands into interplanetary space. In order to study the possible long-distance connections between the corona and the heliosphere, we developed new models of turbulence-driven solar wind acceleration along empirically constrained field lines. We used amore » potential field model of the quiet Sun to trace field lines into the ecliptic plane with unprecedented spatial resolution at their footpoints. For each flux tube, a one-dimensional model was created with an existing wave/turbulence code that solves equations of mass, momentum, and energy conservation from the photosphere to 4 AU. To take account of stream-stream interactions between flux tubes, we used those models as inner boundary conditions for a time-steady magnetohydrodynamic description of radial and longitudinal structure in the ecliptic. Corotating stream interactions smear out much of the smallest-scale variability, making it difficult to see how individual flux tubes on granular or supergranular scales can survive out to 1 AU. However, our models help clarify the level of ''background'' variability with which waves and turbulent eddies should be expected to interact. Also, the modeled fluctuations in magnetic field magnitude were seen to match measured power spectra quite well.« less