skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-Frequency Eddy Current Conductivity Spectroscopy for Near-Surface Residual Stress Profiling in Surface-Treated Nickel-Base Superalloys

Abstract

Recent research indicated that eddy current conductivity measurements can be exploited for nondestructive evaluation of subsurface residual stress in surface-treated components. This technique is based on the so-called piezoresistive effect, i.e., the stress-dependence of electric conductivity. Previous experimental studies were conducted on excessively peened (Almen 10-16A peening intensity levels) nickel-base superalloy specimens that exhibited harmful cold work in excess of 30% plastic strain. The main reason for choosing peening intensities above recommended normal levels was that the eddy current penetration depth could not be decreased below 0.2 mm without conducting accurate measurements above 10 MHz, which is beyond the operational range of most commercially available eddy current instruments. In this paper we report the development of a new high-frequency eddy current conductivity measuring system that offers an extended inspection frequency range up to 80 MHz with a single probe coil. In addition, the new system offers better reproducibility, accuracy, and measurement speed than the previously used conventional system.

Authors:
;  [1]
  1. Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, Ohio 45221-0070 (United States)
Publication Date:
OSTI Identifier:
21054966
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 894; Journal Issue: 1; Conference: Conference on review of progress in quantitative nondestructive evaluation, Portland, OR (United States), 30 Jul - 4 Aug 2006; Other Information: DOI: 10.1063/1.2717987; (c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ACCURACY; EDDY CURRENT TESTING; EDDY CURRENTS; ELECTRIC CONDUCTIVITY; HEAT RESISTING ALLOYS; MEASURING METHODS; MHZ RANGE; NICKEL; NONDESTRUCTIVE ANALYSIS; PENETRATION DEPTH; PLASTICITY; RESIDUAL STRESSES; SHOT PEENING; SPECTROSCOPY; STRESS ANALYSIS; SURFACES

Citation Formats

Abu-Nabah, Bassam A., and Nagy, Peter B. High-Frequency Eddy Current Conductivity Spectroscopy for Near-Surface Residual Stress Profiling in Surface-Treated Nickel-Base Superalloys. United States: N. p., 2007. Web. doi:10.1063/1.2717987.
Abu-Nabah, Bassam A., & Nagy, Peter B. High-Frequency Eddy Current Conductivity Spectroscopy for Near-Surface Residual Stress Profiling in Surface-Treated Nickel-Base Superalloys. United States. doi:10.1063/1.2717987.
Abu-Nabah, Bassam A., and Nagy, Peter B. Wed . "High-Frequency Eddy Current Conductivity Spectroscopy for Near-Surface Residual Stress Profiling in Surface-Treated Nickel-Base Superalloys". United States. doi:10.1063/1.2717987.
@article{osti_21054966,
title = {High-Frequency Eddy Current Conductivity Spectroscopy for Near-Surface Residual Stress Profiling in Surface-Treated Nickel-Base Superalloys},
author = {Abu-Nabah, Bassam A. and Nagy, Peter B.},
abstractNote = {Recent research indicated that eddy current conductivity measurements can be exploited for nondestructive evaluation of subsurface residual stress in surface-treated components. This technique is based on the so-called piezoresistive effect, i.e., the stress-dependence of electric conductivity. Previous experimental studies were conducted on excessively peened (Almen 10-16A peening intensity levels) nickel-base superalloy specimens that exhibited harmful cold work in excess of 30% plastic strain. The main reason for choosing peening intensities above recommended normal levels was that the eddy current penetration depth could not be decreased below 0.2 mm without conducting accurate measurements above 10 MHz, which is beyond the operational range of most commercially available eddy current instruments. In this paper we report the development of a new high-frequency eddy current conductivity measuring system that offers an extended inspection frequency range up to 80 MHz with a single probe coil. In addition, the new system offers better reproducibility, accuracy, and measurement speed than the previously used conventional system.},
doi = {10.1063/1.2717987},
journal = {AIP Conference Proceedings},
number = 1,
volume = 894,
place = {United States},
year = {Wed Mar 21 00:00:00 EDT 2007},
month = {Wed Mar 21 00:00:00 EDT 2007}
}
  • In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation of subsurface residual stresses in shot-peened specimens. This technique is based on the so-called electroelastic effect, i.e., the stress-dependence of the electrical conductivity. Unfortunately, the relatively small ({approx}1%) change in electrical conductivity caused by the presence of compressive residual stresses is often distorted, or even completely overshadowed, by the accompanying conductivity loss caused by cold work and surface roughness effects. Recently, it was observed that, in contrast with most other materials, shot-peened Waspaloy and IN100more » specimens exhibit an apparent increase in electrical conductivity at increasing inspection frequencies. This observation by itself indicates that in these materials the measured conductivity change is probably dominated by residual stress effects, since both surface roughness and increased dislocation density are known to decrease rather than increase the conductivity and the presence of crystallographic texture does not affect the electrical conductivity of these materials, which crystallize in cubic symmetry. Our preliminary experiments indicate that probably there exists a unique 'window of opportunity' for eddy current NDE in nickel-base superalloys. We identified five major effects that contribute to this fortunate constellation of material properties, which will be reviewed in this presentation.« less
  • Shot peening and other mechanical surface enhancement methods improve the fatigue resistance and foreign-object damage tolerance of metallic components by introducing beneficial near-surface compressive residual stresses and hardening the surface. However, the fatigue life improvement gained via surface enhancement is not explicitly accounted for in current engine component life prediction models because of the lack of accurate and reliable nondestructive methods that could verify the presence of compressive near-surface residual stresses in shot-peened hardware. In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation ofmore » subsurface residual stresses in surface-treated components. This technique is based on the so-called piezoresistivity effect, i.e., the stress-dependence of electrical resistivity. We found that, in contrast with most other materials, surface-treated nickel-base superalloys exhibit an apparent increase in electrical conductivity at increasing inspection frequencies, i.e., at decreasing penetration depths. Experimental results are presented to illustrate that the excess frequency-dependent apparent eddy current conductivity of shot-peened nickel-base superalloys can be used to estimate the absolute level and penetration depth of the compressive residual stress layer both before and after partial thermal relaxation.« less
  • Recently, it was shown that eddy current methods can be adapted to residual stress measurement in shot-peened nickel-base superalloys. However, experimental evidence indicates that the piezoresistivity effect is simply not high enough to account for the observed apparent eddy current conductivity (AECC) increase. At the same time, X-ray diffraction data indicates that 'cold work' lingers even when the residual stress is fully relaxed and the excess AECC is completely gone. It is impossible to account for both observations with a single coherent explanation unless we assume that instead of a single 'cold work' effect, there are two varieties of coldmore » work; type-A and type-B. Type-A cold work (e.g., changes in the microscopic homogeneity of the material) is not detected by X-ray diffraction as it does not significantly affect the beam width, but causes substantial conductivity change and exhibits strong thermal relaxation. Type-B cold work (e.g., dislocations) is detected by X-ray, but causes little or no conductivity change and exhibits weak thermal relaxation. Based on the assumption of two separate cold-work variables and that X-ray diffraction results indicate the presence of type-B, but not type-A, all observed phenomena can be explained. If this working hypothesis is proven right, the separation of residual stress and type-A cold work is less critical because they both relax much earlier and much faster than type-B cold work.« less
  • Recent research results indicated that eddy current conductivity measurements might be exploited for nondestructive evaluation of subsurface residual stresses in surface-treated nickel-base superalloy components. This paper presents new results that indicate that in some popular nickel-base superalloys the relationship between the electric conductivity profile and the sought residual stress profile is more tenuous than previously thought. It is shown that in IN718 the relationship is very sensitive to the state of precipitation hardening and, if left uncorrected, could render the eddy current technique unsuitable for residual stress profiling in components of 36 HRC or harder, i.e., in most critical enginemore » applications. The presented experimental results show that the observed dramatic change in the eddy current response of hardened IN718 to surface treatment is caused by very fine nanometer-scale features of the microstructure, such as gamma' and gamma'' precipitates, rather than micrometer-scale features, such as changing grain size or carbide precipitates.« less
  • Because of their frequency-dependent penetration depth, eddy current measurements are capable of mapping the near-surface depth profile of the electrical conductivity. This technique can be used to nondestructively characterize the subsurface residual stress distribution in certain types of shot-peened metals, e.g., in nickel-base superalloys. For quantitative evaluation of the experimental results, analytical and computational techniques are needed to solve the direct and inverse problems, i.e., to predict the frequency-dependent apparent eddy current conductivity from the depth profile of the frequency-independent intrinsic electrical conductivity of the specimen and vice versa. Simple analytical approximations are presented for both the direct and inversemore » eddy current problems by exploiting two specific features of the electrical conductivity variation caused by near-surface residual stresses in shot-peened metals. First, compressive residual stresses are limited to a shallow surface region of depth much less than typical probe coil diameters. Second, the change in electrical conductivity due to residual stresses is always very small, typically less than 1%. The proposed approximations are verified by numerical comparison to much more complicated numerical solutions.« less