skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: XAFS Study on Nano-Sized Pd Metal Catalyst Deposited on Ti-Containing Zeolite by a Photo-Assisted Deposition (PAD) Method

Abstract

The nano-sized Pd metal catalyst can be highly deposited on Ti-containing silicalite zeolite (TS-1) under UV-light irradiation (PAD-Pd/TS-1) using a photo-assisted deposition (PAD) method. The nano-sized Pd metal was deposited having the direct interaction with the photo-excited tetrahedrally coordinated titanium oxide moieties of TS-1. Under a flow of H2 and O2 in water, H2O2 could be synthesized efficiently on this nano-sized Pd metal catalyst.

Authors:
; ; ; ;  [1]
  1. Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)
Publication Date:
OSTI Identifier:
21054711
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 882; Journal Issue: 1; Conference: XAFS13: 13. international conference on X-ray absorption fine structure, Stanford, CA (United States), 9-14 Jul 2006; Other Information: DOI: 10.1063/1.2644624; (c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ABSORPTION SPECTROSCOPY; CATALYSTS; DEPOSITION; FINE STRUCTURE; IRRADIATION; NANOSTRUCTURES; PARTICLE SIZE; PARTICLES; PLATINUM; TITANIUM; TITANIUM OXIDES; ULTRAVIOLET RADIATION; X-RAY SPECTRA; X-RAY SPECTROSCOPY; ZEOLITES

Citation Formats

Yamashita, Hiromi, Miura, Yuki, Tomonari, Masanori, Masui, Yosuke, and Mori, Kohsuke. XAFS Study on Nano-Sized Pd Metal Catalyst Deposited on Ti-Containing Zeolite by a Photo-Assisted Deposition (PAD) Method. United States: N. p., 2007. Web. doi:10.1063/1.2644624.
Yamashita, Hiromi, Miura, Yuki, Tomonari, Masanori, Masui, Yosuke, & Mori, Kohsuke. XAFS Study on Nano-Sized Pd Metal Catalyst Deposited on Ti-Containing Zeolite by a Photo-Assisted Deposition (PAD) Method. United States. doi:10.1063/1.2644624.
Yamashita, Hiromi, Miura, Yuki, Tomonari, Masanori, Masui, Yosuke, and Mori, Kohsuke. Fri . "XAFS Study on Nano-Sized Pd Metal Catalyst Deposited on Ti-Containing Zeolite by a Photo-Assisted Deposition (PAD) Method". United States. doi:10.1063/1.2644624.
@article{osti_21054711,
title = {XAFS Study on Nano-Sized Pd Metal Catalyst Deposited on Ti-Containing Zeolite by a Photo-Assisted Deposition (PAD) Method},
author = {Yamashita, Hiromi and Miura, Yuki and Tomonari, Masanori and Masui, Yosuke and Mori, Kohsuke},
abstractNote = {The nano-sized Pd metal catalyst can be highly deposited on Ti-containing silicalite zeolite (TS-1) under UV-light irradiation (PAD-Pd/TS-1) using a photo-assisted deposition (PAD) method. The nano-sized Pd metal was deposited having the direct interaction with the photo-excited tetrahedrally coordinated titanium oxide moieties of TS-1. Under a flow of H2 and O2 in water, H2O2 could be synthesized efficiently on this nano-sized Pd metal catalyst.},
doi = {10.1063/1.2644624},
journal = {AIP Conference Proceedings},
number = 1,
volume = 882,
place = {United States},
year = {Fri Feb 02 00:00:00 EST 2007},
month = {Fri Feb 02 00:00:00 EST 2007}
}
  • Transparent Ti-containing mesoporous silica (TMS) thin films can be prepared on quartz plates using the spin-coating sol-gel method. These thin films have performed super-hydrophilic surface property. Using a photo-assisted deposition (PAD) method, nano-sized Pt metal can be highly deposited on TMS thin films under UV-light irradiation. XAFS measurement indicates that TMS thin films contain isolated and tetrahedrally coordinated Ti-oxide moieties in the frameworks and nano-sized Pt particles can be highly deposited on the photo-excited Ti species in TMS thin films. Measurement of contact angle of droplet water showed that the surface property of Pt/TMS thin film is also hydrophilic asmore » comparable to that of original TMS thin film.« less
  • Highlights: • TiO{sub 2} nanospindles were synthesized by dealloying Ti–Cu–Pd amorphous alloy. • Pd significantly enhanced the exposure of high-energy (0 0 1) facet of TiO{sub 2}. • TiO{sub 2} with high-energy (0 0 1) facet showed good photocatalytic activity. - Abstract: TiO{sub 2} nanospindles with exposed (0 0 1) facet were synthesized through a simple dealloying reaction. The rutile photocatalysts were characterized by X-ray diffraction, scanning electron microscope and transmission electron microscope, inductively coupled plasma optical emission spectrometry and ultraviolet–visible spectrophotometer. A Rhodamine B dye (RhB) was used to detect the photocatalytic activity of TiO{sub 2} under full lightmore » irradiation. The presence of Pd in the original amorphous alloy reduced the surface free energy of TiO{sub 2}, stabilized the (0 0 1) facet. The Pd8-TiO{sub 2} sample exhibited the largest crystal size along the direction which is perpendicular to the (0 0 1) facet. The photocatalytic degradation rate of RhB was improved due to the Pd addition in the original amorphous alloy. This indicated that the exposure of (0 0 1) facets could enhance the activity of TiO{sub 2} photocatalyst. In addition, the presence of isolated Pd atoms on the surface of TiO{sub 2} would be another probable reason for the improvement of photocatalytic activity.« less
  • Metal-free amorphous hydrocarbon (a-C:H) and Ti-containing hydrocarbon (Ti-C:H) coatings have been synthesized in a hybrid chemical vapor deposition (CVD)/physical vapor deposition (PVD) system which combines inductively coupled plasma (ICP) and sputter deposition. a-C:H coatings have been fabricated by ICP assisted CVD in inert/hydrocarbon gas mixtures while Ti-C:H coatings have been fabricated by ICP assisted magnetron sputtering of Ti in inert/hydrocarbon gas mixtures. We present results of structural characterization and mechanical property measurements on these a-C:H and Ti-C:H coatings. In particular, the influence of hydrogen on the coating mechanical properties is probed experimentally. We show that hydrogen significantly influences the mechanicalmore » properties of a-C:H and Ti-C:H coatings and needs to be considered for a full understanding of the mechanical properties of Ti-C:H coatings. Our results demonstrate that combining ICP with sputter deposition makes a versatile CVD/PVD tool capable of depositing metal-free and metal-containing hydrocarbon coatings with widely varying microstructures and mechanical properties. (c) 2000 American Institute of Physics.« less
  • Previously, Lau (one of the authors) pointed out that the deposition of an amorphous thin film by atomic layer deposition (ALD) on a substrate with nano-sized roughness probably has a surface smoothing effect. In this letter, polycrystalline zinc oxide deposited by ALD onto a smooth substrate was used as a substrate with nano-sized roughness. Atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM) were used to demonstrate that an amorphous aluminum oxide thin film deposited by ALD can reduce the surface roughness of a polycrystalline zinc oxide coated substrate.
  • Graphical abstract: The performed investigations demonstrated a very high catalytic activity of the synthesized hybrid (LaMnO{sub 3}/carbon black) catalyst towards ketonization of n-butanol. Both selectivity (ca. 60%) and yield (ca. 40%) towards heptanone-4 seem to be very promising especially for conversion run at temperatures close to 480 {sup o}C. These parameters were achieved for the hybrid catalyst containing only 10 weight percents of LaMnO{sub 3}. Research highlights: {yields} A novel biotechnological way of a hybrid carbon-based catalyst fabrication {yields} Effective (high yield and selectivity) n-butanol conversion to heptanone-4. {yields} Nano-sized LaMnO{sub 3} crystallites uniformly distributed in carbon matrix. {yields} Exploitationmore » of Salix viminalis tolerance to heavy metal ions. -- Abstract: An attempt has been made to synthesize a two-component hybrid material for highly selective catalytic ketonization of n-butanol. The perovskite-type oxide nano-crystallites were synthesized in the presence of carbon black particles by thermal transformation of equimolar mixture of lanthanum and manganese hydroxides into the perovskite-type oxide. The two-component material was tested as a catalyst for unconventional conversion of n-butanol to heptanone-4. The catalyst exhibited very high selectivity and yield towards the products, despite low content of LaMnO{sub 3} in the two-component material (less than 10% by weight). The low oxide content led to the reduction of the cost of catalyst fabrication and is compensated by its high dispersion (grains ca. 20-30 nm in diameter) providing high conversion and yield comparable to pure-oxide catalysts. Catalyst fabrication is simple and environment friendly since it does not require organic solvents and excess amount of heavy metals (La and Mn).« less