skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-Throughput Synthesis and Characterization of BiMoVOX Materials

Abstract

The high throughput synthesis and characterization of a particular family of ceramic materials, bismuth molybdenum vanadium oxides (BiMoVOX), suitable as inorganic yellow pigments and low temperature oxidation catalysts, is described. Samples, synthesized by calcination and peroxo sol-gel methods, are characterized by X-ray powder diffraction, UV-visible and XAFS spectroscopy. A combined high-throughput XRD/XAFS study of a 54 samples array, with simultaneous refinement of data of both techniques, has been performed. Molybdenum doping of bismuth vanadate results in a phase transition from monoclinic BiVO4 to tetragonal Bi(V,Mo)O4, both of scheelite type. Both central metals, V5+ and Mo6+, remain in a tetrahedral coordination. UV/visible spectroscopy identifies a linear blue shift as a function of Mo6+ amount.

Authors:
; ; ;  [1]; ; ;  [2]
  1. School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ (United Kingdom)
  2. Schools of Chemical Engineering and Analytical Science and Chemistry, University of Manchester, M60 1QD (United Kingdom)
Publication Date:
OSTI Identifier:
21054675
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 882; Journal Issue: 1; Conference: XAFS13: 13. international conference on X-ray absorption fine structure, Stanford, CA (United States), 9-14 Jul 2006; Other Information: DOI: 10.1063/1.2644584; (c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ABSORPTION SPECTROSCOPY; BISMUTH COMPOUNDS; CALCINATION; CATALYSTS; CERAMICS; FINE STRUCTURE; MOLYBDENUM COMPOUNDS; MOLYBDENUM IONS; MONOCLINIC LATTICES; OXIDATION; PHASE TRANSFORMATIONS; SOL-GEL PROCESS; SYNTHESIS; VANADIUM IONS; VANADIUM OXIDES; X-RAY DIFFRACTION; X-RAY SPECTRA; X-RAY SPECTROSCOPY

Citation Formats

Russu, Sergio, Tromp, Moniek, Weller, Mark T., Evans, John, Tsapatsaris, Nikolaos, Beesley, Angela M., and Schroeder, Sven L. M. High-Throughput Synthesis and Characterization of BiMoVOX Materials. United States: N. p., 2007. Web. doi:10.1063/1.2644584.
Russu, Sergio, Tromp, Moniek, Weller, Mark T., Evans, John, Tsapatsaris, Nikolaos, Beesley, Angela M., & Schroeder, Sven L. M. High-Throughput Synthesis and Characterization of BiMoVOX Materials. United States. doi:10.1063/1.2644584.
Russu, Sergio, Tromp, Moniek, Weller, Mark T., Evans, John, Tsapatsaris, Nikolaos, Beesley, Angela M., and Schroeder, Sven L. M. Fri . "High-Throughput Synthesis and Characterization of BiMoVOX Materials". United States. doi:10.1063/1.2644584.
@article{osti_21054675,
title = {High-Throughput Synthesis and Characterization of BiMoVOX Materials},
author = {Russu, Sergio and Tromp, Moniek and Weller, Mark T. and Evans, John and Tsapatsaris, Nikolaos and Beesley, Angela M. and Schroeder, Sven L. M.},
abstractNote = {The high throughput synthesis and characterization of a particular family of ceramic materials, bismuth molybdenum vanadium oxides (BiMoVOX), suitable as inorganic yellow pigments and low temperature oxidation catalysts, is described. Samples, synthesized by calcination and peroxo sol-gel methods, are characterized by X-ray powder diffraction, UV-visible and XAFS spectroscopy. A combined high-throughput XRD/XAFS study of a 54 samples array, with simultaneous refinement of data of both techniques, has been performed. Molybdenum doping of bismuth vanadate results in a phase transition from monoclinic BiVO4 to tetragonal Bi(V,Mo)O4, both of scheelite type. Both central metals, V5+ and Mo6+, remain in a tetrahedral coordination. UV/visible spectroscopy identifies a linear blue shift as a function of Mo6+ amount.},
doi = {10.1063/1.2644584},
journal = {AIP Conference Proceedings},
number = 1,
volume = 882,
place = {United States},
year = {Fri Feb 02 00:00:00 EST 2007},
month = {Fri Feb 02 00:00:00 EST 2007}
}
  • A bulk combinatorial approach for synthesizing alloy libraries using laser engineered net shaping (LENS; i.e., 3D printing) was utilized to rapidly assess material systems for magnetic applications. The LENS system feeds powders in different ratios into a melt pool created by a laser to synthesize samples with bulk (millimeters) dimensions. By analyzing these libraries with autosampler differential scanning calorimeter/thermal gravimetric analysis and vibrating sample magnetometry, we are able to rapidly characterize the thermodynamic and magnetic properties of the libraries. Furthermore, the Fe-Co binary alloy was used as a model system and the results were compared with data in the literature.
  • Three methods of alloy library synthesis, thick-layer deposition followed by interdiffusion, composition-spread codeposition and electron-beam melting of thick deposited layers, have been applied to Ni-Fe-Cr ternary and Ni-Cr binary alloys. Structural XRD mapping and mechanical characterization by means of nanoindentation have been used to characterize the properties of the libraries. The library synthesis methods are compared from the point of view of the structural and mechanical information they can provide.
  • A new ligand, 5-diethylphosphonoisophthalic acid ((HOOC){sub 2}C{sub 6}H{sub 3}-PO{sub 3}(C{sub 2}H{sub 5}){sub 2}, H{sub 2}Et{sub 2}L), for the hydrothermal synthesis of inorganic-organic hybrid compounds was prepared and characterized by NMR-spectroscopy. Its in situ hydrolysis leads to the corresponding 5-phosphonoisophthalic acid ((HOOC){sub 2}C{sub 6}H{sub 3}-PO{sub 3}H{sub 2}, H{sub 4}L). Applying high-throughput methods, different di- and trivalent metal salts for the synthesis of crystalline metal phosphonates based on H{sub 2}Et{sub 2}L have been screened. From the resulting discovery library, single-crystals of four new compounds, [Sm{sub 2}(H{sub 2}O){sub 4}(H(OOC){sub 2}C{sub 6}H{sub 3}-PO{sub 3}){sub 2}].2H{sub 2}O (1), [Cu{sub 3}(H{sub 2}O)(H(OOC){sub 2}C{sub 6}H{sub 3}-PO{sub 3}){submore » 2}].2H{sub 2}O (2), Ca{sub 2}(H{sub 2}O)[H(OOC){sub 2}C{sub 6}H{sub 3}-PO{sub 3}H]{sub 2} (3), and Ba{sub 2}(H{sub 2}O){sub 3}(OOC){sub 2}C{sub 6}H{sub 3}-PO{sub 3} (4), have been isolated. The single-crystal structure determination of the title compounds shows H{sub 4}L to be a versatile ligand, exhibiting different types of coordination modes between the functional groups and the metal ions. A comparison of the structural features of the title compounds shows a varying degree of M-O-M connectivities. Thus, isolated metal-oxygen clusters (compounds 1 and 2), infinite M-O-M chains (compound 3), and infinite M-O-M layers (compound 4) are observed. The title compounds 1, 2, and 3 were further characterized by IR-spectroscopy, TG-, EDX-, and elemental chemical analysis. - Graphical abstract: Applying high-throughput methods, the new ligand 5-diethylphosphonoisophtalic acid, (HOOC){sub 2}C{sub 6}H{sub 3}-PO{sub 3}(C{sub 2}H{sub 5}){sub 2} (H{sub 2}Et{sub 2}L), was reacted with several di- and trivalent metal salts under hydrothermal conditions. Single-crystals of four new inorganic-organic hybrid compounds were isolated from the discovery library. The single-crystal structure analysis shows a varying M-O-M connectivity.« less