skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Impact of Pressure Regulation of Cryogenic Fluids and EPICS EPID Feedback on the Monochromatic Beam Position Stability of the 7ID Beamline at the Advanced Photon Source

Abstract

The first crystal mount of the double-crystal Si (111) cryogenically cooled monochromator of the 7ID beamline at the Advanced Photon Source (APS) is slightly sensitive to pressure variations in the cryogenic lines. Pressure variations during a liquid nitrogen cryocooler fill every 4 hours move the beam by tens of microns. Pressure variations due to the cryocooler closed-loop pressure control with a heater element (around 0.3 psi) move the beam by 5 microns every 15 seconds. We have recently stabilized the coolant pressure with a simple pressure regulator that is in use at many beamlines of the APS. This paper shows the improvements in beam position stability made using this simple yet effective pressure-regulation circuit. We also recently added beam-position feedback to the second-crystal Bragg angle of the monochromator. The Experimental Physics and Industrial Control System (EPICS) Enhanced Proportional-Integral-Differential (EPID) feedback record implementation resulted in an additional improvement of the standard deviation of the beam position to 0.5 {mu}m.

Authors:
; ; ;  [1]
  1. X-ray Science Division, Argonne National Lab., Argonne, IL 60439 (United States)
Publication Date:
OSTI Identifier:
21052679
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 879; Journal Issue: 1; Conference: 9. international conference on synchrotron radiation instrumentation, Daegu (Korea, Republic of), 28 May - 2 Jun 2006; Other Information: DOI: 10.1063/1.2436219; (c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; ADVANCED PHOTON SOURCE; BEAM POSITION; BEAM PRODUCTION; BRAGG REFLECTION; CONTROL SYSTEMS; CRYOGENIC FLUIDS; CRYOGENICS; CRYSTALS; FEEDBACK; IMPLEMENTATION; MONOCHROMATIC RADIATION; MONOCHROMATORS; PHOTON BEAMS; PRESSURE CONTROL; PRESSURE REGULATORS; STABILITY; X RADIATION

Citation Formats

Dufresne, Eric M., Arms, Dohn A., Landahl, Eric C., and Walko, Donald A. Impact of Pressure Regulation of Cryogenic Fluids and EPICS EPID Feedback on the Monochromatic Beam Position Stability of the 7ID Beamline at the Advanced Photon Source. United States: N. p., 2007. Web. doi:10.1063/1.2436219.
Dufresne, Eric M., Arms, Dohn A., Landahl, Eric C., & Walko, Donald A. Impact of Pressure Regulation of Cryogenic Fluids and EPICS EPID Feedback on the Monochromatic Beam Position Stability of the 7ID Beamline at the Advanced Photon Source. United States. doi:10.1063/1.2436219.
Dufresne, Eric M., Arms, Dohn A., Landahl, Eric C., and Walko, Donald A. Fri . "Impact of Pressure Regulation of Cryogenic Fluids and EPICS EPID Feedback on the Monochromatic Beam Position Stability of the 7ID Beamline at the Advanced Photon Source". United States. doi:10.1063/1.2436219.
@article{osti_21052679,
title = {Impact of Pressure Regulation of Cryogenic Fluids and EPICS EPID Feedback on the Monochromatic Beam Position Stability of the 7ID Beamline at the Advanced Photon Source},
author = {Dufresne, Eric M. and Arms, Dohn A. and Landahl, Eric C. and Walko, Donald A.},
abstractNote = {The first crystal mount of the double-crystal Si (111) cryogenically cooled monochromator of the 7ID beamline at the Advanced Photon Source (APS) is slightly sensitive to pressure variations in the cryogenic lines. Pressure variations during a liquid nitrogen cryocooler fill every 4 hours move the beam by tens of microns. Pressure variations due to the cryocooler closed-loop pressure control with a heater element (around 0.3 psi) move the beam by 5 microns every 15 seconds. We have recently stabilized the coolant pressure with a simple pressure regulator that is in use at many beamlines of the APS. This paper shows the improvements in beam position stability made using this simple yet effective pressure-regulation circuit. We also recently added beam-position feedback to the second-crystal Bragg angle of the monochromator. The Experimental Physics and Industrial Control System (EPICS) Enhanced Proportional-Integral-Differential (EPID) feedback record implementation resulted in an additional improvement of the standard deviation of the beam position to 0.5 {mu}m.},
doi = {10.1063/1.2436219},
journal = {AIP Conference Proceedings},
number = 1,
volume = 879,
place = {United States},
year = {Fri Jan 19 00:00:00 EST 2007},
month = {Fri Jan 19 00:00:00 EST 2007}
}