skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Generic Beamline Concept of the PETRA III Undulator Beamlines

Abstract

The conversion of the PETRA storage ring at DESY to a third generation synchrotron radiation light source poses a challenge to the design of the beam transport system. The total power in the white beam will be as high as 7.5kW in the case of the 5m long undulator at 100mA. The power density will be 476 W/mm2 at 20m from the source. Upgrades to a beam current of 200mA have to be accounted for in the design of the beamline components. For the beam transport between the undulator and the experimental hall, the design of a generic beamline is presented. It contains all elements which are needed to guide the beam to the experiment. This generic beamline consists of the estimated maximum of components for this purpose. Special experimental needs may reduce the number of proposed devices in the generic part and add special optical devices close to the experiment, e. g. strong focusing. The paper focuses on the girder concept for all major beam transport components and the collimating shutter system which has to deal with the high power density of the PETRA III undulators.

Authors:
; ; ;  [1]
  1. Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22603 Hamburg (Germany)
Publication Date:
OSTI Identifier:
21052573
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 879; Journal Issue: 1; Conference: 9. international conference on synchrotron radiation instrumentation, Daegu (Korea, Republic of), 28 May - 2 Jun 2006; Other Information: DOI: 10.1063/1.2436117; (c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; BEAM CURRENTS; BEAM PRODUCTION; BEAM TRANSPORT; DESIGN; LIGHT SOURCES; PETRA STORAGE RING; PHOTON BEAMS; SYNCHROTRON RADIATION; WIGGLER MAGNETS; X RADIATION

Citation Formats

Hahn, U., Peters, H. B., Roehlsberger, R., and Schulte-Schrepping, H. The Generic Beamline Concept of the PETRA III Undulator Beamlines. United States: N. p., 2007. Web. doi:10.1063/1.2436117.
Hahn, U., Peters, H. B., Roehlsberger, R., & Schulte-Schrepping, H. The Generic Beamline Concept of the PETRA III Undulator Beamlines. United States. doi:10.1063/1.2436117.
Hahn, U., Peters, H. B., Roehlsberger, R., and Schulte-Schrepping, H. Fri . "The Generic Beamline Concept of the PETRA III Undulator Beamlines". United States. doi:10.1063/1.2436117.
@article{osti_21052573,
title = {The Generic Beamline Concept of the PETRA III Undulator Beamlines},
author = {Hahn, U. and Peters, H. B. and Roehlsberger, R. and Schulte-Schrepping, H.},
abstractNote = {The conversion of the PETRA storage ring at DESY to a third generation synchrotron radiation light source poses a challenge to the design of the beam transport system. The total power in the white beam will be as high as 7.5kW in the case of the 5m long undulator at 100mA. The power density will be 476 W/mm2 at 20m from the source. Upgrades to a beam current of 200mA have to be accounted for in the design of the beamline components. For the beam transport between the undulator and the experimental hall, the design of a generic beamline is presented. It contains all elements which are needed to guide the beam to the experiment. This generic beamline consists of the estimated maximum of components for this purpose. Special experimental needs may reduce the number of proposed devices in the generic part and add special optical devices close to the experiment, e. g. strong focusing. The paper focuses on the girder concept for all major beam transport components and the collimating shutter system which has to deal with the high power density of the PETRA III undulators.},
doi = {10.1063/1.2436117},
journal = {AIP Conference Proceedings},
number = 1,
volume = 879,
place = {United States},
year = {Fri Jan 19 00:00:00 EST 2007},
month = {Fri Jan 19 00:00:00 EST 2007}
}
  • The synchrotron radiation beamline at the PETRA storage ring at DESY with two end stations uses a 4 m-long undulator delivering hard X-ray photons up to 300 keV at a storage ring energy of 12 GeV. The spatial photon intensity distribution at the first undulator harmonic (21.23 keV) was used to determine the horizontal emittance of the storage ring. The set-up installed at 107.7 m from the source point consists of a vacuum chamber with a cryogenically cooled silicon crystal in Laue geometry. The monochromatized radiation is converted to visible light by a fluorescent screen on the back of anmore » aluminum plate and observed by a digital camera. Gaussian fits to horizontal lines through the centre of mass of the images provide the standard deviations of the measured intensity distributions in the horizontal plane. The corresponding emittance values were derived by modeling the whole setup with the SPECTRA code using the emittance as a free parameter and by using machine physics formulas neglecting photon source size effects.« less
  • Grazing incidence small angle x-ray scattering (GISAXS) is a powerful technique for morphology investigation of nanostructured thin films. GISAXS measurements at the newly installed P03 beamline at the storage ring PETRA III in Hamburg, Germany, are compared to the GISAXS data from the beamline BW4 at the storage ring DORIS III, which had been used extensively for GISAXS investigations in the past. As an example, a titania thin film sponge structure is investigated. Compared to BW4, at beamline P03 the resolution of larger structures is slightly improved and a higher incident flux leads to a factor of 750 in scatteredmore » intensity. Therefore, the acquisition time in GISAXS geometry is reduced significantly at beamline P03.« less
  • The heat transfer capabilities of beam stops in CHESS wiggler and undulator beamlines is described. The thermal analysis for the design of these crucial in-vacuum beamline components is based on the use of a finite element analysis computer calculation and experimental heat loading tests.
  • Helmholtzzentrum Berlin has built an APPLE II undulator for the storage ring PETRA III. The device has a total length of 5m and a minimum gap of 11mm. The high magnetic forces in particular in the inclined mode have been analyzed by means of finite element methods (FEM). Specific mechanic components such as flexible joints have been optimized to cope with the gap- and shift-dependent 3D-forces and a sophisticated control and drive system has been implemented. After completion of the device, detailed laser interferometer measurements for all operation modes have been performed. The data are compared to the FEM simulations.
  • The high energy materials science beamline will be among the first fourteen beamlines planned to be operational in 2009 at the new third generation synchrotron light source Petra III at DESY, Germany. The operation and funding of this beamline is assured by GKSS. 70% of the beamline will be dedicated to materials science. The remaining 30% are reserved for physics and are covered by DESY. The materials science activities will be concentrating on three intersecting topics which are industrial, applied, and fundamental research. The beamline will combine three main features: Firstly, the high flux, fast data acquisition systems, and themore » beamline infrastructure will allow carrying out complex and highly dynamic in-situ experiments. Secondly, a high flexibility in beam shaping will be available, fully exploiting the high brilliance of the source. Thirdly, the beamline will provide the possibility to merge in one experiment different analytical techniques such as diffraction and tomography.« less