skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hypotonic stimuli enhance proton-gated currents of acid-sensing ion channel-1b

Journal Article · · Biochemical and Biophysical Research Communications
 [1]; ; ; ;  [1]
  1. Department of Neurobiology and Anatomy, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

Acid-sensing ion channels (ASICs) are strong candidates for mammalian mechanoreceptors. We investigated whether mouse acid-sensing ion channel-1b (ASIC1b) is sensitive to mechanical stimuli using oocyte electrophysiology, because ASIC1b is located in the mechanosensory stereocilia of cochlear hair cells. Hypotonic stimuli that induced membrane stretch of oocytes evoked no significant current in ASIC1b-expressing oocytes at pH 7.5. However, acid (pH 4.0 or 5.0)-evoked currents in the oocytes were substantially enhanced by the hypotonicity, showing mechanosensitivity of ASIC1b and possible mechanogating of the channel in the presence of other components. Interestingly, the ASIC1b channel was permeable to K{sup +} (a principal charge carrier for cochlear sensory transduction) and the affinity of the channel for amiloride (IC{sub 50} (inhibition constant) = approximately 48.3 {mu}M) was quite similar to that described for the mouse hair cell mechanotransducer current. Taken together, these data raise the possibility that ASIC1b participates in cochlear mechanoelectrical transduction.

OSTI ID:
21043652
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 367, Issue 3; Other Information: DOI: 10.1016/j.bbrc.2007.12.096; PII: S0006-291X(07)02703-9; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English