skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Motion of the acoustic peak in the correlation function

Journal Article · · Physical Review. D, Particles Fields
 [1];  [2];  [1]
  1. University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104 (United States)
  2. CCPP, Department of Physics, New York University, New York, New York 10003 (United States)

The baryonic acoustic signature in the large-scale clustering pattern of galaxies has been detected in the two-point correlation function. Its precise spatial scale has been forwarded as a rigid-rod ruler test for the space-time geometry, and hence as a probe for tracking the evolution of dark energy. Percent-level shifts in the measured position can bias such a test and erode its power to constrain cosmology. This paper addresses some of the systematic effects that might induce shifts; namely, nonlinear corrections from matter evolution, redshift space distortions, and biasing. We tackle these questions through analytic methods and through a large battery of numerical simulations, with total volume of the order {approx}100 [Gpc{sup 3}h{sup -3}]. A toy-model calculation shows that if the nonlinear corrections simply smooth the acoustic peak, then this gives rise to an ''apparent'' shifting to smaller scales. However if tilts in the broadband power spectrum are induced then this gives rise to more pernicious ''physical'' shifts. Our numerical simulations show evidence of both: in real space and at z=0, for the dark matter we find percent-level shifts; for haloes the shifts depend on halo mass, with larger shifts being found for the most biased samples, up to 3%. From our analysis we find that physical shifts are greater than {approx}0.4% at z=0 for a LCDM model with {sigma}{sub 8}=0.9. In redshift space these effects are exacerbated, but at higher redshifts are alleviated. We develop an analytical model to understand this, based on solutions to the pair conservation equation using characteristic curves. When combined with modeling of pairwise velocities the model reproduces the main trends found in the data. The model may also help to unbias the acoustic peak.

OSTI ID:
21039113
Journal Information:
Physical Review. D, Particles Fields, Vol. 77, Issue 4; Other Information: DOI: 10.1103/PhysRevD.77.043525; (c) 2008 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 0556-2821
Country of Publication:
United States
Language:
English

Similar Records

Calibrating the baryon oscillation ruler for matter and halos
Journal Article · Tue Sep 15 00:00:00 EDT 2009 · Physical Review. D, Particles Fields · OSTI ID:21039113

Scale dependence of halo and galaxy bias: Effects in real space
Journal Article · Thu Mar 15 00:00:00 EDT 2007 · Physical Review. D, Particles Fields · OSTI ID:21039113

Nonlinear evolution of baryon acoustic oscillations
Journal Article · Tue Jan 15 00:00:00 EST 2008 · Physical Review. D, Particles Fields · OSTI ID:21039113