skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantization of perturbations during inflation in the 1+3 covariant formalism

Abstract

This note derives the analogue of the Mukhanov-Sasaki variables both for scalar and tensor perturbations in the 1+3 covariant formalism. The possibility of generalizing them to nonflat Friedmann-Lemaitre universes is discussed.

Authors:
;  [1]
  1. Institut d'Astrophysique de Paris, UMR-7095 du CNRS, Universite Pierre et Marie Curie, 98 bis bd Arago, 75014 Paris (France)
Publication Date:
OSTI Identifier:
21020439
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review. D, Particles Fields; Journal Volume: 75; Journal Issue: 8; Other Information: DOI: 10.1103/PhysRevD.75.087302; (c) 2007 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; COSMOLOGICAL MODELS; COSMOLOGY; DISTURBANCES; QUANTIZATION; QUANTUM FIELD THEORY; SCALARS; TENSORS; UNIVERSE

Citation Formats

Pitrou, Cyril, and Uzan, Jean-Philippe. Quantization of perturbations during inflation in the 1+3 covariant formalism. United States: N. p., 2007. Web. doi:10.1103/PHYSREVD.75.087302.
Pitrou, Cyril, & Uzan, Jean-Philippe. Quantization of perturbations during inflation in the 1+3 covariant formalism. United States. doi:10.1103/PHYSREVD.75.087302.
Pitrou, Cyril, and Uzan, Jean-Philippe. Sun . "Quantization of perturbations during inflation in the 1+3 covariant formalism". United States. doi:10.1103/PHYSREVD.75.087302.
@article{osti_21020439,
title = {Quantization of perturbations during inflation in the 1+3 covariant formalism},
author = {Pitrou, Cyril and Uzan, Jean-Philippe},
abstractNote = {This note derives the analogue of the Mukhanov-Sasaki variables both for scalar and tensor perturbations in the 1+3 covariant formalism. The possibility of generalizing them to nonflat Friedmann-Lemaitre universes is discussed.},
doi = {10.1103/PHYSREVD.75.087302},
journal = {Physical Review. D, Particles Fields},
number = 8,
volume = 75,
place = {United States},
year = {Sun Apr 15 00:00:00 EDT 2007},
month = {Sun Apr 15 00:00:00 EDT 2007}
}