skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and crystal structure of a novel pentaborate, Na{sub 3}ZnB{sub 5}O{sub 10}

Abstract

A novel ternary borate, trisodium zinc pentaborate, Na{sub 3}ZnB{sub 5}O{sub 10}, has been prepared by solid-state reaction at temperature below 750deg. C. The single-crystal X-ray structural analysis showed that Na{sub 3}ZnB{sub 5}O{sub 10} crystallizes in the monoclinic space group P2{sub 1}/n with a=6.6725(7)A, b=18.1730(10)A, c=7.8656(9)A, {beta}=114.604(6){sup o}, Z=4. It represents a new structure type in which double ring [B{sub 5}O{sub 10}]{sup 5-} building units are bridged by ZnO{sub 4} tetrahedra through common O atoms to form a two-dimensional {sub {approx}}{sup 2}[ZnB{sub 5}O{sub 10}]{sup 3-}-layer that affords one-dimensional channels running parallel to the [101] direction. Symmetry-center related {sub {approx}}{sup 2}[ZnB{sub 5}O{sub 10}]{sup 3-} layers are stacked along the b-axis, with the interlayer void spaces and intralayer open channels filled by Na{sup +} cations to balance charge. The IR spectrum further confirms the presence of both BO{sub 3} and BO{sub 4} groups and UV-vis diffuse reflectance spectrum shows a band gap of about 3.2eV.

Authors:
 [1];  [2];  [2];  [2];  [3]
  1. College of Materials Science and Engineering, Beijing University of Technology, Ping Le Yuan 100, Beijing 100022 (China), E-mail: xueanchen@bjut.edu.cn
  2. College of Materials Science and Engineering, Beijing University of Technology, Ping Le Yuan 100, Beijing 100022 (China)
  3. Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100022 (China)
Publication Date:
OSTI Identifier:
21015821
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 180; Journal Issue: 5; Other Information: DOI: 10.1016/j.jssc.2007.03.014; PII: S0022-4596(07)00112-0; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; BORATES; INFRARED SPECTRA; LAYERS; MONOCLINIC LATTICES; MONOCRYSTALS; SODIUM COMPOUNDS; SPACE GROUPS; SYNTHESIS; TEMPERATURE RANGE 1000-4000 K; VOIDS; ZINC COMPOUNDS

Citation Formats

Chen Xuean, Li Ming, Chang Xinan, Zang Hegui, and Xiao Weiqiang. Synthesis and crystal structure of a novel pentaborate, Na{sub 3}ZnB{sub 5}O{sub 10}. United States: N. p., 2007. Web. doi:10.1016/j.jssc.2007.03.014.
Chen Xuean, Li Ming, Chang Xinan, Zang Hegui, & Xiao Weiqiang. Synthesis and crystal structure of a novel pentaborate, Na{sub 3}ZnB{sub 5}O{sub 10}. United States. doi:10.1016/j.jssc.2007.03.014.
Chen Xuean, Li Ming, Chang Xinan, Zang Hegui, and Xiao Weiqiang. Tue . "Synthesis and crystal structure of a novel pentaborate, Na{sub 3}ZnB{sub 5}O{sub 10}". United States. doi:10.1016/j.jssc.2007.03.014.
@article{osti_21015821,
title = {Synthesis and crystal structure of a novel pentaborate, Na{sub 3}ZnB{sub 5}O{sub 10}},
author = {Chen Xuean and Li Ming and Chang Xinan and Zang Hegui and Xiao Weiqiang},
abstractNote = {A novel ternary borate, trisodium zinc pentaborate, Na{sub 3}ZnB{sub 5}O{sub 10}, has been prepared by solid-state reaction at temperature below 750deg. C. The single-crystal X-ray structural analysis showed that Na{sub 3}ZnB{sub 5}O{sub 10} crystallizes in the monoclinic space group P2{sub 1}/n with a=6.6725(7)A, b=18.1730(10)A, c=7.8656(9)A, {beta}=114.604(6){sup o}, Z=4. It represents a new structure type in which double ring [B{sub 5}O{sub 10}]{sup 5-} building units are bridged by ZnO{sub 4} tetrahedra through common O atoms to form a two-dimensional {sub {approx}}{sup 2}[ZnB{sub 5}O{sub 10}]{sup 3-}-layer that affords one-dimensional channels running parallel to the [101] direction. Symmetry-center related {sub {approx}}{sup 2}[ZnB{sub 5}O{sub 10}]{sup 3-} layers are stacked along the b-axis, with the interlayer void spaces and intralayer open channels filled by Na{sup +} cations to balance charge. The IR spectrum further confirms the presence of both BO{sub 3} and BO{sub 4} groups and UV-vis diffuse reflectance spectrum shows a band gap of about 3.2eV.},
doi = {10.1016/j.jssc.2007.03.014},
journal = {Journal of Solid State Chemistry},
number = 5,
volume = 180,
place = {United States},
year = {Tue May 15 00:00:00 EDT 2007},
month = {Tue May 15 00:00:00 EDT 2007}
}
  • While polyoxometal arsonates that are structural derivatives of their arsenate counterparts have been known for some time, the isostructural phosphonate-for-phosphate substitution in polyoxometalate structures has not been found. In the title compound, two circular hexanuclear molybdenum(V) polyoxo phenylphosphonate anions are assembled around a sodium cation. This assembly is isostructural with previously reported Na[Mo[sup V][sub 6]O[sub 15](HPO[sub 4])(H[sub 2]PO[sub 4])[sub 3]][sub 2][sup 9-] and is the first example of isostructural substitution in a polyoxometal phosphate system.
  • A novel sodium lead pentaborate, NaPbB{sub 5}O{sub 9}, has been successfully synthesized by standard solid-state reaction. The single-crystal X-ray structural analysis showed that NaPbB{sub 5}O{sub 9} crystallizes in the monoclinic space group P2{sub 1}/c with a=6.5324(10) A, b=13.0234(2) A, c=8.5838(10) A, {beta}=104.971(10){sup o}, and Z=4. The crystal structure is composed of double ring [B{sub 5}O{sub 9}]{sup 3-} units, [PbO{sub 7}] and [NaO{sub 7}] polyhedra. [B{sub 5}O{sub 9}]{sup 3-} groups connect with each other forming two-dimensional infinite {sub {infinity}}[B{sub 5}O{sub 9}]{sup 3-} layers, while [PbO{sub 7}] and [NaO{sub 7}] polyhedra are located between the layers. [PbO{sub 7}] polyhedra linked together viamore » corner-sharing O atom forming novel infinite {sub {infinity}}[PbO{sub 6}] chains along the c axis. The thermal behavior, IR spectrum and the optical diffuse reflectance spectrum of NaPbB{sub 5}O{sub 9} were reported. -- Graphical abstract: A new phase, NaPbB{sub 5}O{sub 9}, has been discovered in the ternary M{sub 2}O-PbO-B{sub 2}O{sub 3} (M=alkali-metal) system. The crystal structure consists of a novel infinite {sub {infinity}}[PbO{sub 6}] chains. Display Omitted Research highlights: NaPbB{sub 5}O{sub 9} is the first borate discovered in the ternary M{sub 2}O-PbO-B{sub 2}O{sub 3} (M=alkali-metal) system. NaPbB{sub 5}O{sub 9} crystal structure includes a two-dimensional infinite {sub {infinity}}[B{sub 5}O{sub 9}]{sup 3-} layers and a novel one-dimensional infinite {sub {infinity}}[PbO{sub 6}] chains. [PbO{sub 7}] polyhedron has a highly asymmetric bonding configuration.« less
  • A new ternary borate oxide, K{sub 3}CdB{sub 5}O{sub 10}, has been synthesized by solid-state reaction at 580 deg. C. The compound crystallizes in the monoclinic space group P2{sub 1}/n with a=7.6707 (7) A, b=19.1765 (17) A, c=7.8784 (6) A, {beta}=115.6083 (49){sup o}, and Z=4. The crystal structure consists of a two-dimensional infinite [CdB{sub 5}O{sub 10}] layer, which forms by connecting isolated double ring [B{sub 5}O{sub 10}] groups and CdO{sub 4} tetrahedra. K atoms filling in the interlayer and intralayer link the layers together and balance charge. The IR spectrum has been studied and confirmed the presence of both BO{sub 3}more » and BO{sub 4} groups, and the UV-vis-IR diffuse reflectance spectrum exhibits a band gap of about 3.4 eV. The DSC analysis proves that K{sub 3}CdB{sub 5}O{sub 10} is a congruent melting compound. - Graphical abstract: A new phase, K{sub 3}CdB{sub 5}O{sub 10}, has been discovered in the ternary K{sub 2}O-CdO-B{sub 2}O{sub 3} system. The crystal structure consists of a two-dimensional infinite [CdB{sub 5}O{sub 10}] layer. Highlights: > The compound, K{sub 3}CdB{sub 5}O{sub 10}, was synthesized and characterized for the first time. {yields}K{sub 3}CdB{sub 5}O{sub 10} is a congruent melting compound, which means the large single crystals could be grown from the melt using the Czochralski pulling method. {yields}The crystal structure consists of a two-dimensional infinite [CdB{sub 5}O{sub 10}].« less
  • A new caesium uranyl molybdate belonging to the M{sub 6}U{sub 2}Mo{sub 4}O{sub 21} family has been synthesized by solid-state reaction and its structure determined from single-crystal X-ray diffraction data. Contrary to the other alkali uranyl molybdates of this family (A=Na, K, Rb) where molybdenum atoms adopt only tetrahedral coordination and which can be formulated A{sub 6}[(UO{sub 2}){sub 2}O(MoO{sub 4}){sub 4}], the caesium compound Cs{sub 6}U{sub 2}Mo{sub 4}O{sub 21} should be written Cs{sub 6}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})] with molybdenum atoms in tetrahedral and square pyramidal environments. Cs{sub 6}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})] crystallizes in the triclinic symmetry withmore » space group P1-bar and a=10.4275(14) A, b=15.075(2) A, c=17.806(2) A, {alpha}=70.72(1){sup o}, {beta}=80.38(1){sup o} and {gamma}=86.39(1){sup o}, V=2604.7(6) A{sup 3}, Z=4, {rho}{sub mes}=5.02(2) g/cm{sup 3} and {rho}{sub cal}=5.08(3) g/cm{sup 3}. A full-matrix least-squares refinement on the basis of F{sup 2} yielded R{sub 1}=0.0464 and wR{sub 2}=0.0950 for 596 parameters with 6964 independent reflections with I{>=}2{sigma}(I) collected on a BRUKER AXS diffractometer with Mo(K{alpha}) radiation and a CCD detector. The crystal structure of Cs compound is characterized by {sub {infinity}}{sup 1}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})]{sup 6-} parallels chains built from U{sub 2}O{sub 13} dimeric units, MoO{sub 4} tetrahedra and MoO{sub 5} square pyramids, whereas, Na, K and Rb compounds are characterized by {sub {infinity}}{sup 1}[(UO{sub 2}){sub 2}O(MoO{sub 4}){sub 4}]{sup 6-} parallel chains formulated simply of U{sub 2}O{sub 13} units and MoO{sub 4} tetrahedra. Infrared spectroscopy measurements using powdered samples synthesized by solid-state reaction, confirm the structural results. The thermal stability and the electrical conductivity are also studied. The four compounds decompose at low temperature (between 540 and 610 {sup o}C). -- Graphical abstract: The staking of {sub {infinity}}{sup 1}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})]{sup 6-} infinite uranyl molybdate ribbons in the Cs{sub 6}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})] structure. Display Omitted Highlights: {yields} Cs{sub 6}U{sub 2}Mo{sub 4}O{sub 2} a new compound with bidimensional crystal structure, characterized by infinite uranyl molybdate chains. {yields} Crystal structure similar to these of the compounds containing Na, K, Rb. {yields} Molybdenum atoms surrounded by five oxygen atoms to form an original and strongly distorted MoO{sub 5} environment. {yields} The chains arrangement illustrates the key role of the alkaline ionic radius, in the crystal structure distortion for Cs compound.« less
  • An alcoholysis exchange between tris(hydroxymethyl)ethane (THME-H{sub 3}) or tris(hydroxymethyl)propane (THMP-H{sub 3}) and group IV metal isopropoxides yields compounds of the general formula (THMR){sub 2}M{sub 4}(OCHMe{sub 2}){sub 10}[M = Ti (R = E, 1; P, 2); Zr (R = E, 3; P, 4)]. 1 and 2 are formed in toluene, at ambient glovebox temperatures, and adopt a typical fused-M{sub 3}O{sub 12} structure where each titanium atom is surrounded by six oxygens in a slightly distorted face-shared bioctahedral arrangement. All of the oxygens of the central core are from the THMR ligand, present as {mu}-O and {mu}{sub 3}-O oxygen bridges. Generation ofmore » 3 or 4 requires heating in toluene at reflux temperatures. The zirconium atoms of 3 possess an extremely distorted edge-shared bioctahedral geometry where the central core consists of a Zr{sub 4}O{sub 8} ring (eight oxygens: six from THME ligands and two from isopropoxide ligands). Each of the zirconium atoms is six-coordinated with four bridging oxygens and two terminal isopropoxide ligands. Spincast deposited films generated from toluene solutions of 1 and 3 indicate that increased uniformity of the films and decreased hydrolysis occur in comparison to the cases of Ti(OCHMe{sub 2}){sub 4}, 5, and [Zr(OCHMe{sub 2}){sub 4}{center_dot}HOCHMe{sub 2}]{sub 2}, 6, respectively.« less