skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydrothermal synthesis, crystal structure, and characterization of a new pseudo-two-dimensional uranyl oxyfluoride, [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}[(UO{sub 2}){sub 4}(OH{sub 2}){sub 3}F{sub 10}]

Abstract

A new uranyl oxyfluoride, [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}[(UO{sub 2}){sub 4}(OH{sub 2}){sub 3}F{sub 10}] has been synthesized by a hydrothermal reaction technique using (C{sub 2}H{sub 5}){sub 4}NBr, UO{sub 2}(OCOCH{sub 3}){sub 2}.2H{sub 2}O, and HF as reagents. The structure of [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}[(UO{sub 2}){sub 4}(OH{sub 2}){sub 3}F{sub 10}] has been determined by a single-crystal X-ray diffraction technique. [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}[(UO{sub 2}){sub 4}(OH{sub 2}){sub 3}F{sub 10}] crystallizes in the monoclinic space group P2{sub 1}/n (No. 14), with a=13.852(3)A, b=15.532(3)A, c=16.481(3)A, {beta}=98.88(3){sup o}, V=3503.4(12)A{sup 3}, and Z=4. [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}[(UO{sub 2}){sub 4}(OH{sub 2}){sub 3}F{sub 10}] reveals a novel pseudo-two-dimensional crystal structure that is composed of UO{sub 2}F{sub 5}, UO{sub 3}F{sub 4}, and UO{sub 4}F{sub 3} pentagonal bipyramids. Each uranyl pentagonal bipyramid shares edges and corners through F atoms to form a six-membered ring. The rings are further interconnected to generate infinite strips running along the b-axis. [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}[(UO{sub 2}){sub 4}(OH{sub 2}){sub 3}F{sub 10}] has been further characterized by elemental analysis, bond valence calculations, Infrared and Raman spectroscopy, and thermogravimetric analysis.

Authors:
 [1];  [2]
  1. Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA (United Kingdom)
  2. Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA (United Kingdom), E-mail: dermot.ohare@chem.ox.ac.uk
Publication Date:
OSTI Identifier:
21015669
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 180; Journal Issue: 2; Other Information: DOI: 10.1016/j.jssc.2006.11.004; PII: S0022-4596(06)00585-8; Copyright (c) 2006 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; HYDROFLUORIC ACID; HYDROTHERMAL SYNTHESIS; MONOCLINIC LATTICES; MONOCRYSTALS; OXYFLUORIDES; RAMAN SPECTROSCOPY; SPACE GROUPS; THERMAL GRAVIMETRIC ANALYSIS; URANYL COMPOUNDS; X-RAY DIFFRACTION

Citation Formats

Ok, Kang Min, and O'Hare, Dermot. Hydrothermal synthesis, crystal structure, and characterization of a new pseudo-two-dimensional uranyl oxyfluoride, [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}[(UO{sub 2}){sub 4}(OH{sub 2}){sub 3}F{sub 10}]. United States: N. p., 2007. Web. doi:10.1016/j.jssc.2006.11.004.
Ok, Kang Min, & O'Hare, Dermot. Hydrothermal synthesis, crystal structure, and characterization of a new pseudo-two-dimensional uranyl oxyfluoride, [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}[(UO{sub 2}){sub 4}(OH{sub 2}){sub 3}F{sub 10}]. United States. doi:10.1016/j.jssc.2006.11.004.
Ok, Kang Min, and O'Hare, Dermot. Thu . "Hydrothermal synthesis, crystal structure, and characterization of a new pseudo-two-dimensional uranyl oxyfluoride, [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}[(UO{sub 2}){sub 4}(OH{sub 2}){sub 3}F{sub 10}]". United States. doi:10.1016/j.jssc.2006.11.004.
@article{osti_21015669,
title = {Hydrothermal synthesis, crystal structure, and characterization of a new pseudo-two-dimensional uranyl oxyfluoride, [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}[(UO{sub 2}){sub 4}(OH{sub 2}){sub 3}F{sub 10}]},
author = {Ok, Kang Min and O'Hare, Dermot},
abstractNote = {A new uranyl oxyfluoride, [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}[(UO{sub 2}){sub 4}(OH{sub 2}){sub 3}F{sub 10}] has been synthesized by a hydrothermal reaction technique using (C{sub 2}H{sub 5}){sub 4}NBr, UO{sub 2}(OCOCH{sub 3}){sub 2}.2H{sub 2}O, and HF as reagents. The structure of [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}[(UO{sub 2}){sub 4}(OH{sub 2}){sub 3}F{sub 10}] has been determined by a single-crystal X-ray diffraction technique. [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}[(UO{sub 2}){sub 4}(OH{sub 2}){sub 3}F{sub 10}] crystallizes in the monoclinic space group P2{sub 1}/n (No. 14), with a=13.852(3)A, b=15.532(3)A, c=16.481(3)A, {beta}=98.88(3){sup o}, V=3503.4(12)A{sup 3}, and Z=4. [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}[(UO{sub 2}){sub 4}(OH{sub 2}){sub 3}F{sub 10}] reveals a novel pseudo-two-dimensional crystal structure that is composed of UO{sub 2}F{sub 5}, UO{sub 3}F{sub 4}, and UO{sub 4}F{sub 3} pentagonal bipyramids. Each uranyl pentagonal bipyramid shares edges and corners through F atoms to form a six-membered ring. The rings are further interconnected to generate infinite strips running along the b-axis. [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}[(UO{sub 2}){sub 4}(OH{sub 2}){sub 3}F{sub 10}] has been further characterized by elemental analysis, bond valence calculations, Infrared and Raman spectroscopy, and thermogravimetric analysis.},
doi = {10.1016/j.jssc.2006.11.004},
journal = {Journal of Solid State Chemistry},
number = 2,
volume = 180,
place = {United States},
year = {Thu Feb 15 00:00:00 EST 2007},
month = {Thu Feb 15 00:00:00 EST 2007}
}
  • Single crystals of (NH{sub 3}(CH{sub 2}){sub 3}NH{sub 3})(H{sub 3}O){sub 2}(UO{sub 2}){sub 3}(MoO{sub 4}){sub 5} (1), C(NH{sub 2}){sub 3}(UO{sub 2})(OH)(MoO{sub 4}) (2), (C{sub 4}H{sub 12}N{sub 2})(UO{sub 2})(MoO{sub 4}){sub 2} (3) and (C{sub 5}H{sub 14}N{sub 2})(UO{sub 2})(MoO{sub 4}){sub 2}{center_dot}H{sub 2}O (4) have been synthesized hydrothermally by using UO{sub 2}(CH{sub 3}COO){sub 2}{center_dot}2H{sub 2}O, (NH{sub 4}){sub 2}Mo{sub 2}O{sub 7}, HF{sub (aq)}, H{sub 2}O, and the respective organic template. The materials have layered structures with anionic uranium molybdate sheets separated by cationic organic templates. Compound 1 has an unprecedented uranium molybdate topology, whereas 2 is structurally related to johannite, Cu[(UO{sub 2}){sub 2}(SO{sub 4}){sub 2}(OH){sub 2}](H{submore » 2}O){sub 8}, and 3 and f4 have layer topologies similar to zippiete, K{sub 2}[UO{sub 2}(MoO{sub 4}){sub 2}]. Thermogravimetric measurements indicate all that four materials, after template loss, form a crystalline mixture of UO{sub 2}MoO{sub 4} and MoO{sub 3}. Crystal data: (NH{sub 3}(CH{sub 2}){sub 3}(H{sub 3}O){sub 2}(UO{sub 2}){sub 3}(MoO{sub 4}){sub 5}, orthorhombic, space group Pbnm (No. 62), with a = 10.465(1) {angstrom}, b = 16.395(1) {angstrom}, c = 20.241(1) {angstrom}, and Z = 4; C(NH{sub 2}){sub 3}(UO{sub 2})(OH)MoO{sub 4}), monoclinic, space group P2{sub 1}/c (No. 14), with a = 15.411(1) {angstrom}, b = 7.086(1) {angstrom}, c = 18.108(1) {angstrom}, {beta} = 113.125(2){degree}, and Z = 4; (C{sub 4}H{sub 12}N{sub 2})(UO{sub 2})(MoO{sub 4}){sub 2}, triclinic, space group P{bar 1} (No. 2), with a = 7.096(1) {angstrom}, b = 8.388(1) {angstrom}, c = 11.634(1) {angstrom}, {alpha} = 97.008(3){degree}, {beta} = 96.454(2){degree}, {gamma} = 110.456(3){degree}, and Z = 2; (C{sub 5}H{sub 14}N{sub 2})(UO{sub 2})(MoO{sub 4}){sub 2}{center_dot}H{sub 2}O, orthorhombic, space group Pbca (No. 61), with a = 12.697(1) {angstrom}, b = 13.247(1) {angstrom}, c = 17.793(1) {angstrom}, and Z = 8.« less
  • Trace amounts of H/sub 2/O and limited exposure to air of reaction mixtures of UCl/sub 4/ and 12-crown-4, 15-crown-5, benzo-15-crown-5, 18-crown-6, or dibenzo-18-crown-6 in 1:3 mixtures of CH/sub 3/OH and CH/sub 3/CN resulted in the hydrolysis and oxidation of UCl/sub 4/ to (UO/sub 2/Cl/sub 4/)/sup 2/minus//. In the presence of these crown ethers, it has been possible to isolate intermediate products via crystallization of crown complexes of the (UO/sub 2/Cl/sub 4/)/sup 2/minus// ion, the (UCl/sub 6/)/sup 2/minus// ion, and (UO/sub 2/Cl/sub 2/(OH/sub 2/)/sub 3/). The neutral moiety crystallizes as a hydrogen-bonded crown ether complex; however, crown ether complexation of amore » counterion, either an ammonium ion formed during the oxidation of U(IV) or a Na/sup +/ ion leached from glass reaction vessels, resulted in novel crystalline complexes of the ionic species. ((NH/sub 4/)(15-crown-5)/sub 2/)/sub 2/(UO/sub 2/Cl/sub 4/) /times/ 2CH/sub 3/CN, ((NH/sub 4/)(benzo-15-crown-5)/sub 2/)/sub 2/(UCl/sub 6/) /times/ 4CH/sub 3/CN, and ((NH/sub 4/)(dibenzo-18-crown-6))/sub 2/(UO/sub 2/Cl/sub 4/) /times/ 2CH/sub 3/CN have been structurally characterized by single-crystal X-ray diffraction techniques. The results of all the crystal studies are presented in detail. The ammonium ions interact with the crown ethers via hydrogen-bonding and electrostatic interactions. 15-Crown-5 and benzo-15-crown-5 form 2:1 sandwich cations, allowing no H/sub 4/N/sup +//hor ellipsis/(UO/sub 2/Cl/sub 4/)/sup 2/minus// interaction. The dibenzo-18-crown-6 complexed ammonium ions are 1:1 and form bifurcated hydrogen bonds with the chlorine atoms in the (UO/sub 2/Cl/sub 4/)/sup /minus// anion. The formation of (Na(12-crown-4)/sub 2//sub 2/(UO/sub 2/Cl/sub 4/) /times/ 2OHMe and (UO/sub 2/Cl/sub 2/(OH)/sub 2/)/sub 3/) /times/ 18-crown-6 /times/ H/sub 2/O /times/ OHMe has been confirmed by preliminary single-crystal X-ray diffraction studies.« less
  • Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)]·7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)]·4H2O (NDUS1), and one uranyl selenate-selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L-cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4)more » Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two-dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two-dimensional uranyl selenate-selenite sheets with a U/Se ratio of 1/2. In-situ reaction of the L-cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L-cystine, balancing the charge of the sheets.« less
  • Two modifications of the new uranyl oxalate hydroxide dihydrate [UO{sub 2}){sub 2}(C{sub 2}O{sub 4})(OH){sub 2}(H{sub 2}O){sub 2}] (1 and 2) and one form of the new uranyl oxalate hydroxide trihydrate [(UO{sub 2}){sub 2}(C{sub 2}O{sub 4})(OH){sub 2}(H{sub 2}O){sub 2}].H{sub 2}O (3) were synthesized by hydrothermal methods and their structures determined from single-crystal X-ray diffraction data. The crystal structures were refined by full-matrix least-squares methods to agreement indices R(wR)=0.0372(0.0842) and 0.0267(0.0671) calculated for 1096 and 1167 unique observed reflections (I>2{sigma}(I)), for {alpha} (1) and {beta} (2) forms, respectively and to R(wR)=0.0301(0.0737) calculated for 2471 unique observed reflections (I>2{sigma}(I)), for 3. The {alpha}-formmore » of the dihydrate is triclinic, space group P1-bar , Z=1, a=6.097(2), b=5.548(2), c=7.806(3)A, {alpha}=89.353(5), {beta}=94.387(5), {gamma}=97.646(5){sup o}, V=260.88(15)A{sup 3}, {beta}-form is monoclinic, space group C2/c, Z=4, a=12.180(3), b=8.223(2), c=10.777(3)A, {beta}=95.817(4), V=1073.8(5)A{sup 3}. The trihydrate is monoclinic, space group P2{sub 1}/c, Z=4, a=5.5095(12), b=15.195(3), c=13.398(3)A, {beta}=93.927(3), V=1119.0(4)A{sup 3}. In the three structures, the coordination of uranium atom is a pentagonal bipyramid composed of dioxo UO{sub 2}{sup 2+} cation perpendicular to five equatorial oxygen atoms belonging to one bidentate oxalate ion, one water molecule and two hydroxyl ions in trans configuration in 2 and in cis configuration in 1 and 3. The UO{sub 7} polyhedra are linked through hydroxyl oxygen atoms to form different structural building units, dimers [U{sub 2}O{sub 10}] obtained by edge-sharing in 1, chains [UO{sub 6}]{sub {approx}} and tetramers [U{sub 4}O{sub 26}] built by corner-sharing in 2 and 3, respectively. These units are further connected by oxalate entities that act as bis-bidentate to form one-dimensional chains in 1 and bi-dimensional network in 2 and 3. These chains or layers are connected in frameworks by hydrogen-bond arrays.« less
  • The syntheses and characterization of six monomeric rhenium thiolate complexes and the structural characterization of two useful rhenium starting materials are presented. Pyridine-2-thiol (2), 3,6-bis(dimethyl-tert-butylsilyl)pyridine-2-thiol (3), and pyrimidine-2-thiol (4) were reacted with [Bu{sub 4}N][ReOBr{sub 4}(H{sub 2}O)]{center_dot}2H{sub 2}O (5), [Bu{sub 4}N][ReOBr{sub 4}(OPPh{sub 3})] (6), [ReO{sub 2}(C{sub 5}H{sub 5}N){sub 4}], and [Re(N{sub 2}CO(C{sub 6}H{sub 5}))Cl{sub 2}(PPh{sub 3}){sub 2}] to give [ReO(C{sub 5}H{sub 4}NS){sub 3}] (7), [ReO(C{sub 8}H{sub 12}NSiS){sub 3}] (8), [ReO(OH)(C{sub 11}H{sub 20}NSi{sub 2}S){sub 2}] (9), [Re(N{sub 2}-CO(C{sub 6}H{sub 5}))Cl(PPh{sub 3}){sub 2}(C{sub 5}H{sub 4}NS)] (10), [ReO(C{sub 4}H{sub 3}N{sub 2}S){sub 3}] (11), and [Re(P(C{sub 6}H{sub 5}){sub 3})(C{sub 4}H{sub 3}N{sub 2}S){sub 3}] (12). Crystalmore » structures are reported for the compounds.« less