skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Guided modes of elliptical metamaterial waveguides

Abstract

The propagation of guided electromagnetic waves in open elliptical metamaterial waveguide structures is investigated. The waveguide contains a negative-index media core, where the permittivity {epsilon} and permeability {mu} are negative over a given bandwidth. The allowed mode spectrum for these structures is numerically calculated by solving a dispersion relation that is expressed in terms of Mathieu functions. By probing certain regions of parameter space, we find the possibility exists to have extremely localized waves that transmit along the surface of the waveguide.

Authors:
; ;  [1]
  1. Physics and Computational Sciences, Research and Engineering Sciences Department, Naval Air Warfare Center, China Lake, California 93555 (United States)
Publication Date:
OSTI Identifier:
21011330
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review. A; Journal Volume: 76; Journal Issue: 1; Other Information: DOI: 10.1103/PhysRevA.76.013834; (c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; DISPERSION RELATIONS; ELECTROMAGNETIC RADIATION; FUNCTIONS; OPTICAL DISPERSION; PERMEABILITY; PERMITTIVITY; SPECTRA; WAVE PROPAGATION; WAVEGUIDES

Citation Formats

Halterman, Klaus, Feng, Simin, and Overfelt, P. L. Guided modes of elliptical metamaterial waveguides. United States: N. p., 2007. Web. doi:10.1103/PHYSREVA.76.013834.
Halterman, Klaus, Feng, Simin, & Overfelt, P. L. Guided modes of elliptical metamaterial waveguides. United States. doi:10.1103/PHYSREVA.76.013834.
Halterman, Klaus, Feng, Simin, and Overfelt, P. L. Sun . "Guided modes of elliptical metamaterial waveguides". United States. doi:10.1103/PHYSREVA.76.013834.
@article{osti_21011330,
title = {Guided modes of elliptical metamaterial waveguides},
author = {Halterman, Klaus and Feng, Simin and Overfelt, P. L.},
abstractNote = {The propagation of guided electromagnetic waves in open elliptical metamaterial waveguide structures is investigated. The waveguide contains a negative-index media core, where the permittivity {epsilon} and permeability {mu} are negative over a given bandwidth. The allowed mode spectrum for these structures is numerically calculated by solving a dispersion relation that is expressed in terms of Mathieu functions. By probing certain regions of parameter space, we find the possibility exists to have extremely localized waves that transmit along the surface of the waveguide.},
doi = {10.1103/PHYSREVA.76.013834},
journal = {Physical Review. A},
number = 1,
volume = 76,
place = {United States},
year = {Sun Jul 15 00:00:00 EDT 2007},
month = {Sun Jul 15 00:00:00 EDT 2007}
}
  • No abstract prepared.
  • The authors develop a plane-wave-based transfer matrix method in curvilinear coordinates to study the guided modes in curved nanoribbon waveguides. The problem of a curved structure is transformed into an equivalent one of a straight structure with spatially dependent tensors of dielectric constant and magnetic permeability. The authors investigate the coupling between the eigenmodes of the straight part and those of the curved part when the waveguide is bent. The authors show that curved sections can result in strong oscillations in the transmission spectrum similar to the recent experimental results of Lawet al.
  • We investigate the mode properties of planar dielectric aluminum-quinoline (Alq{sub 3}) multilayer waveguides comprising one single or three equally spaced embedded nanometer-thin (∼10 nm thick) Alq{sub 3}-Mg{sub 0.9}:Ag{sub 0.1} composite metal-island layers. The plasmonic waveguides were fabricated by organic molecular beam deposition. Transverse magnetic (TM) and transverse electric (TE) modes were selectively excited using the m-line method. The symmetric plasmonic TM{sub 0} mode was launched in all waveguides and—in addition—two higher order plasmonic TM{sub 1} and TM{sub 2} modes were generated in waveguides comprising three metal layers. Other TM modes have hybrid dielectric-plasmonic characters, showing an increased effective refractive index whenmore » one electric field antinode is close to a metallic layer. TM modes which have all their antinode(s) in the dielectric layers propagate essentially like dielectric modes. TE modes with antinode(s) at the position of the metal layer(s) are strongly damped while the losses are low for TE modes comprising a node at the position of the composite metal film(s). The possibility to control the effective refractive index and the losses for individual hybrid plasmonic-dielectric TM and dielectric TE modes opens new design opportunities for mode selective waveguides and TM-TE mode couplers.« less
  • Metamaterials (MTMs) are artificial structures made of periodic elements and are designed to obtain specific electromagnetic properties. As long as the periodicity and the size of the elements are much smaller than the wavelength of interest, an artificial structure can be assigned a permittivity and permeability, just like natural materials. Metamaterials can be customized to have the permittivity and permeability desired for a particular application. When the permittivity and permeability are made simultaneously negative in some frequency range, the metamaterial is called double-negative or left-handed and has some unusual properties. For example, Cherenkov radiation (CR) in a left-handed metamaterial ismore » backward; radiated energy propagates in the opposite direction to particle velocity. This property can be used to improve the design of particle detectors. Waveguides loaded with metamaterials are of interest because the metamaterials can change the dispersion relation of the waveguide significantly. Slow backward waves, for example, can be produced in a MTM-loaded waveguide without corrugations. In this paper we present theoretical studies of waveguides loaded with an anisotropic and dispersive medium (metamaterial). The dispersion relation of a MTM-loaded waveguide has several interesting frequency bands which are described. We present a universal method to simulate wakefield (CR) generation in a waveguide loaded with a dispersive and anisotropic medium. This method allows simulation of different waveguide cross sections, any transverse beam distribution, and any physical dispersion, of the medium. The method is benchmarked against simple cases, which can be theoretically calculated. Results show excellent agreement.« less