skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chemical decomposition of iron in Spanish coal pyrolysis identified by Moessbauer spectroscopy at different temperatures

Journal Article · · Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
; ;  [1]
  1. Taif University, El Taif (Saudi Arabia). Faculty of Science

Three chars from lignite (Se), sub bituminous (AA6), bituminous (BCA) Spanish coals produced at 673 K, 773 K, and 873 K were analyzed by Moessbauer spectroscopy at room temperature, and 80 K, except BCA char produced at 873 K, its analysis was extended down to 10 K. Least square fit analysis for the spectra of Se chars showed that, jarosite/Fe{sup 3+} was hydrolyzed into rozenite/Fe2+ at 873 K. Pyrite was reduced to troilite (FeS) at 773 K. Both jarosite and very broad doublet were observed at T = 673 K. The hyperfine parameters of this phase gave close values to microcrystalline iron in either Fe (II) or Fe (III) states. On the other hand, the spectral analysis of AA6 chars ascertained that rozenite was hydrolyzed to goethite (FeOOH) in the range of 773 K-873 K, whereas pyrite was reduced to pyrrohotite (Fe{sub 1-x}S). However, no chemical changes were observed for jarosite in all AA6-chars. Likewise, siderite was changed into magnetite in the BCA chars produced at 673 K and 773 K. Spectrum performed at 10 K for char produced at 873 K proved the presence of ferrihydrite (H = 489.2 kOe), troilite (H = 355.3 kOe) and a broad paramagnetic doublet belonging to an organic iron. These phases and still remaining siderite inferred also that such transformations are incomplete.

OSTI ID:
21004479
Journal Information:
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 29, Issue 16; ISSN 1556-7036
Country of Publication:
United States
Language:
English