skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Goals, Requirements, and Design Implications for the Advanced High-Temperature Reactor

Conference ·
OSTI ID:20995572
 [1]
  1. Oak Ridge National Laboratory, 1 Bethel Valley Rd Oak Ridge, TN 37830 (United States)

The Advanced High-Temperature Reactor (AHTR), also called the liquid-salt-cooled Very High-Temperature Reactor (LS-VHTR), is a new reactor concept that has been under development for several years. The AHTR combines four existing technologies to create a new reactor option: graphite-matrix, coated-particle fuels (the same fuel as used in high-temperature gas-cooled reactors); a liquid-fluoride-salt coolant with a boiling point near 1400 deg. C; plant designs and decay-heat-removal safety systems similar to those in sodium-cooled fast reactors; and a helium or nitrogen Brayton power cycle. This paper describes the basis for the selection of goals and requirements, the preliminary goals and requirements, and some of the design implications. For electricity production, the draft AHTR goals include peak coolant temperatures between 700 and 800 deg. C and a maximum power output of about 4000 MW(t), for an electrical output of {approx}2000 MW(e). The electrical output matches that expected for a large advanced light-water reactor (ALWR) built in 2025. Plant capital cost per kilowatt electric is to be at least one-third less than those for ALWRs with the long-term potential to significantly exceed this goal. For hydrogen production, the peak temperatures may be as high as 950 deg. C, with a power output of 2400 MW(t). The safety goals are to equal or surpass those of the modular high-temperature gas-cooled reactor with a beyond-design-basis accident capability to withstand large system and structural failures (vessel failure, etc.) without significant fuel failure or off-site radionuclide releases. These safety goals may eliminate the technical need for evacuation zones and reduce security requirements and significantly exceed the safety goals of ALWRs. The plant design should enable economic dry cooling to make possible wider nuclear-power-plant siting options. Uranium consumption is to be less than that for a LWR, with major improvements in repository performance and nonproliferation characteristics. (authors)

Research Organization:
The ASME Foundation, Inc., Three Park Avenue, New York, NY 10016-5990 (United States)
OSTI ID:
20995572
Resource Relation:
Conference: 14. international conference on nuclear engineering (ICONE 14), Miami, FL (United States), 17-20 Jul 2006; Other Information: Country of input: France
Country of Publication:
United States
Language:
English