skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Analysis of C-S-H gel and cement paste by small-angle neutron scattering

Abstract

The role of small-angle X-ray and neutron scattering (SAXS and SANS) in the characterization of cement is briefly reviewed. The unique information obtainable from SANS analysis of C-S-H gel in hydrating cement is compared with that obtainable by other neutron methods. Implications for the nature of C-S-H gel, as detected by SANS, are considered in relation to current models. Finally, the application of the SANS method to cement paste is demonstrated by analyzing the effects of calcium chloride acceleration and sucrose retardation on the resulting hydrated microstructure.

Authors:
 [1];  [2]
  1. Materials Science and Engineering Laboratory, NIST, Gaithersburg, MD 20899 (United States). E-mail: andrew.allen@nist.gov
  2. Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208 (United States). E-mail: jthomas@northwestern.edu
Publication Date:
OSTI Identifier:
20995368
Resource Type:
Journal Article
Resource Relation:
Journal Name: Cement and Concrete Research; Journal Volume: 37; Journal Issue: 3; Conference: International Conference on cementitious materials as model porous media: Nanostructure and transport processes, Centro Monte Verita (Switzerland), 17-22 Jul 2005; Other Information: DOI: 10.1016/j.cemconres.2006.09.002; PII: S0008-8846(06)00211-0; Copyright (c) 2006 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CALCIUM SILICATES; CEMENTS; GELS; HYDRATES; HYDRATION; MICROSTRUCTURE; NEUTRON DIFFRACTION; SMALL ANGLE SCATTERING; X-RAY DIFFRACTION

Citation Formats

Allen, Andrew J., and Thomas, Jeffrey J. Analysis of C-S-H gel and cement paste by small-angle neutron scattering. United States: N. p., 2007. Web. doi:10.1016/j.cemconres.2006.09.002.
Allen, Andrew J., & Thomas, Jeffrey J. Analysis of C-S-H gel and cement paste by small-angle neutron scattering. United States. doi:10.1016/j.cemconres.2006.09.002.
Allen, Andrew J., and Thomas, Jeffrey J. Thu . "Analysis of C-S-H gel and cement paste by small-angle neutron scattering". United States. doi:10.1016/j.cemconres.2006.09.002.
@article{osti_20995368,
title = {Analysis of C-S-H gel and cement paste by small-angle neutron scattering},
author = {Allen, Andrew J. and Thomas, Jeffrey J.},
abstractNote = {The role of small-angle X-ray and neutron scattering (SAXS and SANS) in the characterization of cement is briefly reviewed. The unique information obtainable from SANS analysis of C-S-H gel in hydrating cement is compared with that obtainable by other neutron methods. Implications for the nature of C-S-H gel, as detected by SANS, are considered in relation to current models. Finally, the application of the SANS method to cement paste is demonstrated by analyzing the effects of calcium chloride acceleration and sucrose retardation on the resulting hydrated microstructure.},
doi = {10.1016/j.cemconres.2006.09.002},
journal = {Cement and Concrete Research},
number = 3,
volume = 37,
place = {United States},
year = {Thu Mar 15 00:00:00 EDT 2007},
month = {Thu Mar 15 00:00:00 EDT 2007}
}
  • Flow-through experiments were conducted to study the calcium–silicate–hydrate (C–S–H) gel dissolution kinetics. During C–S–H gel dissolution the initial aqueous Ca/Si ratio decreases to reach the stoichiometric value of the Ca/Si ratio of a tobermorite-like phase (Ca/Si = 0.83). As the Ca/Si ratio decreases, the solid C–S–H dissolution rate increases from (4.5 × 10{sup −} {sup 14} to 6.7 × 10{sup −} {sup 12}) mol m{sup −} {sup 2} s{sup −} {sup 1}. The changes in the microstructure of the dissolving C–S–H gel were characterized by small-angle neutron scattering (SANS) and {sup 29}Si magic-angle-spinning nuclear magnetic resonance ({sup 29}Si-MAS NMR). Themore » SANS data were fitted using a fractal model. The SANS specific surface area tends to increase with time and the obtained fit parameters reflect the changes in the nanostructure of the dissolving solid C–S–H within the gel. The {sup 29}Si MAS NMR analyses show that with dissolution the solid C–S–H structure tends to a more ordered tobermorite structure, in agreement with the Ca/Si ratio evolution.« less
  • Small-angle neutron scattering was used to measure the effect of water-to-cement ratio (w/c) and cement batch variation on the surface area of ordinary Portland cement (OPC) paste after hydration for 28 days at room temperature, and to measure the development of surface area over the first 3 days of hydration at 30 C. The 28-day surface area was found to increase with w/c ratio in proportion to the volume of original water-filled space available for reaction product to form. The surface areas of different batches of type I OPC were quite similar, while that of a type II OPC wasmore » some 15% lower. Early surface area development at 30 C followed the heat evolution for the first 24 h of hydration and then leveled off, suggesting that further heat evolution was associated with reaction product, which added little to the surface area. These results support the theory that two different morphologies of the calcium-silicate-hydrate gel reaction product form during cement hydration.« less
  • {sup 1}H nuclear magnetic resonance (NMR) relaxation analysis of water in progressively dried white cement paste is used to estimate the width and relative specific area of intra-C-S-H sheet pores and inter-C-S-H particle gel pores. The measurement is based on the ratio of solid echo to free induction decay signal amplitudes and the observation that as water is removed, so the surface fraction contributing to the solid echo increases. The intra- and inter-C-S-H pores are found to be 1.5 nm and 4.1 nm thick respectively. The total specific area and volume ratio is 2.4 and 0.88 respectively. The volume ratiomore » of readily evaporable water within the pore types is 0.63. Hence, the sheet porosity is 47% of the total or 38% if based solely on evaporable water. The method is distinct from NMR analyses based on the relaxation time. There is good agreement between the measured widths by the two methods.« less
  • This paper deals with the effect of the leaching process of cement based materials on their mechanical properties. This process induces mainly a total leaching of Ca(OH){sub 2} and a progressive decalcification of C-S-H which leads to a gradient of C/S ratio in the leaching zone. In a previous work, the authors venture the hypothesis that the dissolution of calcium hydroxide was the essential parameter governing both decrease in strength and increase in porosity in the case of a paste sample made with an OPC cement which leads to a 20% content of calcium. In order to quantify the effectmore » of the decrease of C/S ratio in C-S-H, the authors have performed experiments on paste samples with the admixture of silica fume to reduce the content of calcium hydroxide and thus emphasize the effect of C/S ratio decrease of the C-S-H. The leaching process was achieved by the use of a 50% concentrate solution of ammonium nitrate. Compression tests were conducted on micro-cylinder samples (10, 12, 14, 20 and 30 mm of diameter) because of the slow kinetics of degradation due to the leaching. The deterioration of the cement paste and the mortar exposed to the action of the ammonium nitrate was indicated by a peripheral zone of less resistance. The experimental results allow the modeling of the mechanical behavior of cement pastes in relation to the ratio of degraded area over total area of the sample A{sub d}/A{sub t}. The model thus defined allows separation of the effect of calcium hydroxide leaching and C-S-H leaching, and shows the importance of the first one. The current research program tries to characterize the deterioration of the mechanical properties of the concrete surrounding radioactive wastes, due to the water flow during storage.« less
  • Scanning electron microscopy (SEM) microanalyses of the calcium-silicate-hydrate (C-S-H) gel in Portland cement pastes rarely represent single phases. Essential experimental requirements are summarised and new procedures for interpreting the data are described. These include, notably, plots of Si/Ca against other atom ratios, 3D plots to allow three such ratios to be correlated and solution of linear simultaneous equations to test and quantify hypotheses regarding the phases contributing to individual microanalyses. Application of these methods to the C-S-H gel of a 1-day-old mortar identified a phase with Al/Ca=0.67 and S/Ca=0.33, which we consider to be a highly substituted ettringite of probablemore » composition C{sub 6}A{sub 2}S-bar{sub 2}H{sub 34} or {l_brace}Ca{sub 6}[Al(OH){sub 6}]{sub 2}{center_dot}24H{sub 2}O{r_brace}(SO{sub 4}){sub 2}[Al(OH){sub 4}]{sub 2}. If this is true for Portland cements in general, it might explain observed discrepancies between observed and calculated aluminate concentrations in the pore solution. The C-S-H gel of a similar mortar aged 600 days contained unsubstituted ettringite and an AFm phase with S/Ca=0.125.« less